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‘\\' In u preceding part of this article, wé have obtained the equation :
au
ow

~ which combined with 0 = V2(eU | ow) gives
0= V2p,

and therefore the density p induced on any element do, which is evidently a function
of the coordinates z, Y, = of p, is also fharmonic]; it is moreover evident that p can
never become infinite when p is within the surface.
It now remains to prove that the formula
;i 1y .
V=— fdcr V—= — (dcrpV,

47 ow

(gives a function V within the surface which always tends to the limit ¥ as the surface
is approached].*

For this, suppose the point p to approach infinitely near the surface; then it is clear
that the value of p, the density of the electricity induced by p, will be insensible,
except for those parts infinitely near to p, and in these parts it is easy to see that the
value of p will be independent of the form of the surface, and depend only on the : _
distance p, do. But we shall afterwards show (art. 10), that when this surface is a oud
sphere of any radius whatever, the value of pis

—

=27Tf3,

P

« being the shortest distance between p and the surface, and [ representing the distance
2, do. This expression will give an idea of the rapidity with which p decreases, in
passing from the infinitely small portion of the surface in the immediate vi cinity of p,
to any other part situate at a finite distance from it . . .- It is also evident that the
function V, determined by the above-written formuls, will have no singular values
within the surface under consideration.

[The author continues by proving the formula expressing the symmetry of Green’s
function.}

65. Gauss on Potential Theory!

19.

Let V be the potential of a system of masses M My, My, ..., located at the points
P, Py, Py, ...; v ihe potential of a second system of masses m,, m,, m4, ..., located
at the points p, p,, ps, ...; furthermore, let Vi, Vo, Va, ... be the values of V at the

* Green writes “ shall always give V = I, for any point within the surface and infinitely near it,
whatever may be the assumed value of 7. He also writes {p) where we have written P

PC. F. Gauss, “Aligemeine Lehrsitze in Beziehung auf die im umgekehrten Verhiltnisse des
Quadrats der Entfernung ..., Werke, V, 191242 [221-2286],
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Myvy + Mov, + M, Vst =m V) 4o, Vodmg Vo ove,
whieh is also expressed by Y My = > omV il M {is a variable] representing every mass
of the first, m one representing every mass of the second system. Indeed, > Mvas well
as > mV is just the sum (“Aggregat ] of all combinations Mimyfr,;, where r, sig-
nifies the mutual distance of the points where the corresponding masses M, and M,
are located.

For example, if the seeond system of masses is distributed on g surface in such a
way that the mass kds lies on the surface element ds, then My — [ &V ds, or if in the
first system the surface element ds similarly contains the mass KdS, then _[ KvdS =

JEV ds. Itis important to remark in connection with the latter case that this equation

remains valid if the two surfaces coineide; for brevity, we shall here only indicate the
high points of the way in which this extension of the result can be Justified rigorously.2
For it is not difficult, to show that these two integrals, considered with Tegard to the
same surface, can be obtained as limiting values of integrals referring to two separate
”’] surfaces, by letting the distance between these decrease indefinitely;
for this purpose one only needs to consider the two surfaces as congruent [ gleich ]
and parallel. This argument, is immediately obvious only when the given surface is so
constructed that all its normals form acute angles with one straight line. A surface
where this condition fails {as it does for any closed surface) will first have to be di-
vided into two or more parts which separately satisty this condition; thereby it
becomes easy to reduce this case to the preceding one.

20.

If we apply the theorem of the preceding section to the case where the second system
of masses is distributed over a spherical surface of radius R with uniform density
k=1, then the resulting potential v is a constant, namely 47 &, in the interior of the
sphere. At each point outside of the sphere, at a distance r from its center, v = 47 Ry,
or is equal to the potential at the center of a mass of density 47 B2 at, every point; on
the surface of the sphere the two values of » coincide. Hence if the first system of
masses is entirely inside the sphere, the > Mvpis equal to 477 B times the total mass of
this system; but if the system of masses is entirely outside the sphere, then Z Muv is
equal to 47 B? times the potential of this mass in the center of the sphere; finally, if
the first system of masses s distributed continuously on the surface of the sphere,
then both expressions are equally valid for [ Kv dS. There follows the

Tuporem. If V signifies the potential of & mass distributed over a spherical surface
Is of radius R, then, integrating over the entire spherical surface,

j Vds = 4m(RM° 4 R2y0).
vhere M° designates the total mass inside the sphere, V9 the potential at the center

2 The standard of rigor here is comparable with that used by Cauchy, Jacobi, and Riemaun,
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of the sphere due to the external mass, and the masses which happen to be continu-
ously distributed over the surface of the sphere are arbitrarily assigned to either the
inner or the outer masses.

21

THEOREM. The potential V' of masses lying outside a connected domain cannot at
the same time have one constant value in one part of this domain and a different
constant value in another part of it.?

Proof. Let us assume that the potential is equal to a constant a at every point of
the domain A4, and is (algebraically) larger than a at every point of another domain B
bordering on 4 but contaiming no mass. Construct a sphere, partly contained in B,
while the rest and its center are in 4; such a construction is always possible. Now if R
is the radius of this sphere, and ds an infinitesimal element of its surface, then, accord-
ing to the theorem of the preceding section, [V ds=4nR%, and [(V —a)ds=0,
which is impossible since for the part of the surface which liesin 4, V —a = 0, and
for the remaining part, by bypothesis, ¥V —a £ 0.

One similarly sees that it is impossible for » to be smaller than a in all points of a
domain bordering on 4.

Obviously at least one of these cases would have to occur, however, if our theorem
were false.

This theorem has the following corollaries:

1. If the region containing the masses surrounds a domain without mass, and the
potential is constant in some neighborhood of this domain, then it is constant through-
out the domain.

II. If the potential of the masses lying in a bounded [““endlichen ] region has a
constant value in any part of external space, then the potentlal is constant throughout
the unbounded external space.

At the same time, one easily sees that in the second case the constant value of the
potential must be 0. For if one denotes by M the total mass if they all have the same
sign, or in the opposite case the total positive or negative mass, whichever is greater,
then the absolute value of the potential is less than M/r at any point whose distance
from the nearest element of mass is r, a fraction which can obviously become smaller
than any given [positive] quantity in external space.

22,

THrEorEM. If ds is the element of a surface bounding a finite connected domain,
P the force which arbitrarily distributed masses in ds exert in the direction normal
to the surface, a force directed inward or outward being considered positive according
as the attracting or the repelling masses are considered to be positive, then, extending
the integral over the entire surface,

des: drM + 20 M,

where M represents the total mass inside the surface, and M’ that distributed on it.*
Proof. If Udu denotes that part of P which results from the mass element du,
r the distance of the element du from ds, and » the angle which the inward directed

2 This is clearly a special case of the Prineiple of the Uniqueness of Harmonic Continuation.
4 This is Gauss’s Integral Theorem, a very powerful tool of potential theory.



normial makes with  in ds, then U = (cos u)jr?. But, by a lemma, proved in §6 of the
Theoria attractionis sphaeroidicorum ellipticorum with regard to each definite dp,
{ (cos w)jr? ds =0, 2. or 47, depending on whether du is outside the domain bounded
by the surface, on the boundary itself, or within that, domain. Since [ Pds equals the
sum of all the d | Uds, our theorem follows immediately.

It must be remarked that the lemma. used here requires a modification from the
form in which it is stated in the reference cited above. For r represents the distance of
a given point from the element ds, and in the case where this point lies on the surface
itself, the formula | (cos u) ds/r? = 2m holds only as long as the curvature of this
bounding surface is continuous. [This is not so], however, if the point lies on an edge
or vertex; then, instead of 27, one must use the solid arigle cut out by the totality of
straight lines tangent to the surface which émanate from there. Since such exceptional
cases concern only lines or points, that is, not parts of the surface but only boundaries
separating parts, this obviously has no effect on the application made here of the lemma.

23.

We draw a normal through every point of the surface and let p denote the distanee
of an arbitrary point of this normal from the initjal point placed on the surface itself,
considered positive on the inside of the surface. The potential V of the masses can be
considered as a function of p and two other variables, which somehow distinguish the
individual points of the surface from each other. The same is true of the partial de-
nvative &V /dp; however, its value will be considered here only for points [falling] on
the surface itself. or for » = 0. Since this is completely equivalent with P, if ... no
mags 18 distributed on the surface itself, then,

av
[[5-ds=4nm.
ap
In the case, however, where the whole mass is distributed only on the surface itself,
80 that the element ds has the mass kds, ¢Viép and P no longer remain equivalent; .
&V [op has two different values, namely P — 27k and P + 2k, depending on whether
P i8 to be considered as positive or as negative. Since now || kds obviously will be
equal to all of the mass M’ distributed over the surface M, and, by the theorem of the
preceding section, [[ Pds = 27M", one has

f_fﬂ/ds:o, or ff?i/-ds=4wM’,
op

depending on whether &V [&p refers to the value on the inside or the outside of the

surface, respectively. Hence, in the first case the mtegral [ (6V/op) ds is treated exactly

as though the mass M’ belonged to the outer space, in the second, as though it be-

longed to the inner space.

Therefore, for arbitrarily distributed masses, the equation [ (8V/ép)ds =4nM is
generally valid in the sense that M represents the mass contained in the inner domain,
it being understood that, if there also are continuously distributed masses on the
surface itself, these are added to the inner ones, or are excluded from them; depending
on whether one has chosen the value corresponding to the outward or the inward
normal derivative as ¢V /ap.

Accordingly, if no masses at all lie in the interior of the domain, then at least when
oV /op is understood to be the value corresponding to thei nterior, [ (8V/dp) ds = 0.
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