H

1.00797

3 4 5 3 7 8 9

Li | Be B{C|NJ{|OITF

6.941 9.01218 § 10.81 1200t 14.0067 | 15.9994 | 18.99840

1 12 13 14 15 16 T

Na | Mg ALl Si| P | S |

22.98977 24.305 26.98154 28.086 3097376 32.06 35.453

19 20 2 22 23 24 25 26 27 28 29 0 ki 32 33 34 315

K|Ca|Sc|Ti| V|Cr|{Mn|Fe |Co[Ni|Cu|[Zn|Ga|Ge]| As | Se | Br

39.098 40.08 44.9559 47.90 509414 51.99¢6 54.9380 55.847 58.9332 58.70 b3.546 63.38 89.72 72.59 749216 78.96 79.904

37 38 39 40 41 42 43 44 45 46 47 48 49 50 13 52 53

Rb|Sr|Y |Zr |[Nb/Mo|Tc {Ru|Rh|Pd|Ag|Cd| In|Sn | Sb| Te| I

85.4678 87.62 88,9059 91.22 92.9064 95.94 98 101.07 |102.9055 106.4 107.868 112.40 114.82 118.69 121.75 127.60 | 126.9045

55 56 57 72 73 74 73 76 bl 78 79 a0 81 82 83 B84 13

Cs|Ba{*La| Hf [ Ta | W [Re|Os | Ir | Pt |Au|Hg| Tl | Pb| Bi | Po | At

1329054 137.34 | 138.9055| 178.49 [180.9479 183.85 186.207 190.2 192.22 195.09 196.9665| 200.59 204.37 207.19 208.9804 (2100 {2100

87 88 89 104 105 106

Fr | Ra |tAc| Ku | Ha

(223) 226.0254 227)
58 59 bQ [ 62 63 64 65 66 67 (3] 9 70 ‘ n
Ce |Pr |Nd |Pm|{Sm | Eu {Gd| Tb|Dy| Ho| Er |Tm|Yb | Lu
140.12 140.9077 144.24 (147 150.4 151496’ 152.25 158.9254 162.50 164.9304 167.26 168.9342 173.04 174.97
90 91 92 9) 9% 95 9% 97 98 9% 100 10t 102 103
Th{Pa| U |[Np|[Pu|{Am|Cm|Bk |Cf | Es | Fm |Md|No | Lr
232.0381 | 231.6359 238.029 [237.0482 (?44) (243) 247) {247) 25H 1254) 257) 1258) (255) (256)

Ithough an elaborately refined set of rules exists to
explain many phenomena observed at the atomic

level, there is no satisfactory model of the atomic
nucleus, the central core of the atom around which a pre-
cise number of negatively charged electrons is presumed
to orbit. Any attempt to produce a coherent theory of or-
biting electrons, without knowledge of the structure around
which these orbits are constructed, would seem to be
doomed to failure. Nonetheless, a highly elaborated alge-
braic theory of the atom, designed to account for a mass of
data gathered from spectral analysis and other operations,
does exist in the form of the quantum mechanical model.
Most of this theory presumes no more about the atomic
18
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nucleus than that it contains a certain number of positively
charged particles agglomerated in a central mass.

It would seem past time to arrive at a more developed
theory of the atomic nucleus, and from there to rework the
cumbersome and very problematical portrait of the atom
that the quantum mechanical model has bequeathed us.
University of Chicago physicist Dr. Robert J. Moon has pro-
posed a geometrical model of the nucleus to do just that.

Moon has produced a synthetic geometric construction
of the periodic table of the elements in such a way as to
account geometrically, in a first approximation, for the ex-
istence of the 92 naturally occurring elements and many of
their physical properties. | have added to Moon’§ hypoth-
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esis a construction that provides anonmagical cause for the
Magic Number theory (the theory that attempts to account
for changes in the nuclear properties of the elements), and
| have reexamined in a new light some of the original data
used to establish the periodicity of the elements. Itis hoped
that a further working out of this approach will offer a causal
explanation for the electron shells and orbitals and so pro-
vide a more solid grounding, as it were, for a new quantum
mechanics.

Professor Moon's Hypothesis

The existing dogma of nuclear physics requires us to be-
lieve that protons, being all of positive charge, will repel
each other up to a certain very close distance correspond-
ing to the approximate size of the nucleus. At that point,
the theory goes, a binding force takes hold, and forces the
little particles to stick together, until they get too close, at
which point they repel again. Thus is the holding together
of the protons in the nucleus accounted for.

Disdaining such arbitrary notions of “forces,” and pre-
ferring to view the cause of such phenomena as resulting
from a certain characteristic of physical space-time, Moon
and the author demanded a different view. Considerations
of “least action” suggested to Moon a symmetric arrange-
ment of the charges on a sphere, while the number of such
charges (protons), and the existence of shells and orbitals
beyond the nucleus (electrons) suggested a nested ar-
rangement of such spheres. Our belief that the universe
must be organized according to one set of laws, applying
as well to the very large and the very small, suggested that
the harmonic proportions which the astronomer Johannes

Kepler found in the ordering of the solar system would also

be evident in the microcosmic realm, so we looked for this
also in the arrangement of the nucleus.

We were led immediately to the five regular or Platonic
solids—the tetrahedron, cube, octahedron, icosahedron,
and dodecahedron (Figure 1). Moon developed a nested
model, using the Platonic solids to define the atomic nucle-
us in much the same way that Kepler determined the orbits
of the planets of the solar system. In Moon’s “Keplerian
atom,” the 92 protons of the naturally occurring elements
are determined by the vertices of two identical pairs of
nested solids. Before elaborating the construction of this
model, let us review the properties of the Platonic solids.

The five Platonic solids define a type of limit of what can
be perfectly constructed in three-dimensional space. These
solids are the only ones that can be formed with faces that
are equal, regular plane figures (the equilateral triangle,
square, and pentagon) and equal solid angles. A derivative
set of solids, the semiregular or Archimedean solids, can
be formed using two or three regular plane figures for faces
in each figure. Both species of solids can be circumscribed
by a sphere, the circumsphere, such that all the vertices of
the figure are just touched by the sphere. The Platonic
solids are unique in that each has just one sphere, the
insphere, that will sit inside, just tangent to the interior of
each one of the faces (Figure 2). The Archimedean solids
must have either two or three distinct inspheres.

A third species of sphere, the midsphere, is formed by a
radius connecting the center of the solid with the midpoint

of each of its edges, and is associated with both the Platonic
and Archimedean solids (Figure 3). The surface of the mid-
sphere pokes both inside and outside the faces of the fig-
ure. Two of the Archimedean solids, the cuboctahedron
and the icosidodecahedron, actually are formed by th
midspheres of the Platonic solids. ‘
The surfaces of the Platonic solids and related regular
solids represent unique divisions of the surface of a sphere
according to a least-action principle. -

How the Model Works

In Moon'’s “Keplerian atom,” the 92 protons of the natu-
rally occurring elements are determined by two identical
sets of nested solids each containing 46 vertices. Moon'’s
proposed arrangement is as follows:

Two pairs of regular Platonic solids, the cube-octahedron
pair and the icosahedron-dodecahedron pair, may be called
duals: one will fit inside the other such that its vertices fit
centrally on the faces of the other, each fitting perfectly
inside a sphere whose surface is thus perfectly and sym-
metrically divided by the vertices (Figure 4). The tetrahe-
dron is dual unto itself and therefore plays a different role.

The four dual solids may be arranged in a nested se-
quence-—-cube, octahedron, icosahedron, dodecahed-
ron—such that the sum of the vertices is 46 (Figure 5):

Cube = 8
Octahedron = 6
lcosahedron =12
Dodecahedron = 20
Total = 46

The nesting of the cube-octahedron and icosahedron-
dodecahedron is clear from a study of the duality relation-
ship. However, to fit the first pair of duals into the next pair
appears at first to be a problem: The 6 vertices of the octa-
hedron do not fit obviously into the 20 faces of the icosa-
hedron, nor could the fourfold axial symmetry of the for-
mer be simply inserted into the fivefold axial symmetry of
the latter. Yet, the octahedron may still be placed within
the icosahedron in a manner that is fitting and beautiful.
Six vertices of the octahedron may be placed near to six
vertices of the icosahedron, such that the distance from the
nearby vertex of the icosahedron to the edge opposite it is -
divided in the divine proportion [¢ = (V5 + 1/ 2 =
approximately 1.618] (Figure 6).>

The axis of the cube-octahedron pair is thus skew to the
axis of the icosahedron-dodecahedron dual, and a special

~ relationship exists at this point of singularity in the model.

Examining the edges of the figures so nested, and desig-
nating the length of the smallest inner figure, the cube, as
unity (1), we find:

1.00 ¢

Edge of cube

Edge of octahedron 212
Edge of icosahedron 1.89
Edge of dodecahedron = 1.618

Then taking the radius of the sphere circumscribing the
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Tetrahedron

Cube

Octahedron

N\~

\ Icosahedron
e Dodecahedron ‘
Figure 1
THE FIVE PLATONIC SOLIDS

The five regular or Platonic solids represent a limit of
constructibility in three-dimensional space. Euler’s
formula correlates the relationship of vertices (V), faces
(F), and edges (E) for each solidasV + F = E — 2.

Polyhedron Name Vertices Faces Edges
Tetrahedron 4 4 6
Cube 8 6 12
Octahedron 6 8 12
lcosahedron 12 20 30
Dodecahedron 20 12 30

r

cube to be unity, the radii of circumscribing spheres stand
in proportion:

Cube 1.00

Octahedron 1.733
lcosahedron 2.187
Dodecahedron 2.618

20 May-June 1988 21st CENTURY

Note that the ratio of edges between the inner and the
outer figures is in the divine proportion. Also, the ratio of
radii between inner and outer spheres is the square of the
divine proportion (approximately 2.618).

Building the Nucleus

If we now take the vertices of the solids so arranged to be
the singularities in space where the protons are found, a
remarkable structure to the nucleus appears. Firstwe see a
sort of periodicity in the nucleus, formed by the completion
of each of the “shells,” as we might call the circumspheres
of the cube, octahedron, icosahedron, and dodecahedron.

Let us first look at which unique elements correspond to
the completed “shells”:

Oxygen (8) = completed cube

Silicon (14) = completed octahedron
Iron (26) = completed icosahedron
Palladium (46) = completed dodecahedron

completed twin nested
figures

Uranium (92)

Thus, highly stable oxygen, which makes up 62.55 per-
cent of the total number of atoms in the Earth’s crust, and
silicon, which makes up 21.22 percent, are represented by
the first two completed figures. Together these two ele-
ments account for 84 percent of all the atoms in the Earth’s
crust. Although the curve of the relative abundance of the
elements declines exponentially with increasing atomic
number, iron, the completed icosahedron, is three orders
of magnitude higher than the elements neariton the atomic
number scale and makes up 1.20 percent of the atoms in
the Earth’s crust, and 5 percent by weight. Iron is aiso a
most unique element in that it represents the minimum of
the mass packing fraction and the endpoint of the natural
fusion process.

A look at the graph of atomic volumes (Figure 7) is also
very thought-provoking in this regard. The periodicity ex-
hibited in the atomic volumes (atomic weight divided by
the density of each element) was being examined by the
German scientist Lothar Meyer in 1869 at the time he and
Russian scientist Dmitri Mendeleyev simultaneously devel-
oped the concept of periodicity. Itwas later discovered that
other physical properties——compressibility, coefficient of
expansion, and reciprocal melting point—obey the same
periodicity (Figure 8).

Most textbooks discuss the maxima of these properties
occurring at atomic numbers 3, 11, 19, and so on, the so-
called Group 1a, or alkalies. Modn’s construction drew my
attention, however, to the minima. The minima occurring
in the range of 4-8, 13-14, 26, and 46 suggest that a minimal
space-filling and maximal structural stability occur at the
completion of each Platonic solid within the nucleus. We
shall see later how a second periodicity of the neutron
structure can be derived from the same geometric picture
to account for the maxima observed, thus defining both the
maxima and minima of these periodic properties from with-
in the nucleus. -«




Fission of the Nucleus

Moon’s model beautifully accounts for the process of
fission. Filling out with protons the outermost figure, the
dodecahedron, brings us to palladium, atomic number 46,
an element that has an unusually symmetric character. First,
alook at the table of electron configurations (Table 1) shows
palladium to be the only element in which an outer electron
shell, previously occupied, is completely abandoned by the
extra-nuclear electrons. Second, palladium is a singularity
in the fission process, falling at a minimum on the table of
distribution of fission products. Palladium also marks the
boundary point for the sort of fission that occurs with very
high energy (for example, protons of billion-electron-volt
energies), when nuclei are split up into two parts of similar
size. Silver, atomic number 47, is the lightest of the ele-
ments that may split this way.

To go beyond palladium in our model, a twin structure
joins at one of the faces of the dodecahedron (Figure 9) and
begins to fill up its vertex positions with protons, beginning
on the outermost figure. (Silver, atomic number 47, is the
first.) Six positions are unavailable to it—-the five vertex
positions on the binding face of the second figure and the
one at the face center where a vertex of the inscribed ico-
sahedron pokes through.

Thus on the second nested dodecahedron figure, 15 out
of 20 of the dodecahedral vertices are available, and 11 out
of 12 of the icosahedral vertices. We now fill 11 of the avail-
able dodecahedral vertices, thus creating 47-silver and con-
tinuing through 57-lanthanum. At this point, one face of the
dodecahedron remains open to allow filling of the inner
figures. The cube and octahedron fill next, producing the
14 elements of the lanthanide, or rare earth series (58-
cerium to 71-lutetium). Placing the proton charges on the
inner solids causes a corresponding inward pulling of the
electron orbitals. Thus, the otherwise unaccounted for fill-
ing of the previously unfilled 4-f orbitals (see Table 1), and
the mystery of the period of 14 for the rare earths are ex-
plained.

The figure is complete at radon, atomic number 86, the
last of the noble gases. To allow the last six protons to find
their places, the twin dodecahedra must open up, using
one of the edges of the binding face as a “hinge” (Figure
10).

The element 87-francium, the most unstable of the first
101 elements of the periodic system, tries to find its place
on the thus-opened figure, but unsuccessfully so. Less than
one ounce of this ephemeral substance can be found atany
one time in the totality of the Earth’s crust. Then 88-radium,
89-actinium, and 90-thorium find their places on the re-
maining vertices. Two more transformations are then nec-
essary before we reach the last of the 92 naturally occurring
elements.

To allow for 91-protactinium, the hinge is broken, and
the figure held together at only one point (Figure 11).

The construction of 92-uranium requires that the last pro-
ton be placed at the point of joining, and the one solid
slightly displaced to penetrate the other, in order to avoid
two protons occupying the same position. This obviously
unstable structure is ready to break apart at a slight provo-
cation. And so we have the fission of the uranium atom, as

Tetrahedron

Cube

Icosahedron

Dodecahedron

Figure 2
INSCRIBING THE PLATONIC SOLIDS
Both the Platonic and Archimedean solids may be
circumscribed by a single sphere (the circumsphere),
but the five Platonic solids are unique in having only
one sphere that may be inscribed within them (the
insphere), as shown.,

hypothesized by Dr. Robert . Moon, one of the scientists
who first made fission happen in a wartime laboratory on
the University of Chicago football field.

How Free Is Free Space?

Before proceeding, let us pause to consider the implica-
tions of this model. The sympathetic reader is perhaps in-
trigued with the model, but probably wondering whether
we actually intend him to believe that protons find their
way into these pretty little shapes and if so, how and why
they doit. ,

The answer to the first part of the question is, yes. As to
the second part, the reader would best find t!le answer by

s
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Table 1

THE ELECTRON ORBITS OF THE ELEMENTS
(Atomic numbers 1-54)

Atomic| Ele- K L u N 9

No. ment 1 2 3 4 5
s (sp| spd spdf |spdf

1 H 1

2 He 2

. 3 Li 2 [1

4 Be 212

5 B 2121

6 C 2122

7 N 223

8 (o] 224

9 F 2125

10 Ne 2126

1 Na 2|26 |1

12 Mg 21262

13 Al 212621

14 Sl 212622

15 P 212623

16 S 2|26 24

17 Cl 2]|126| 25

18 Ar 212626

19 K 212626 . |1

20 Ca 22626 . |2

21 Sc 2|26|26 1 |2

22 T 2126|26 2 |2

23 v 2126|26 3 |2

24 Cr 2126126 5 |1

25 Mn 2126|126 6 |2

26 Fe 2126|126 6 |2

27 Co 22626 7 |2

28 NI 2126| 26 8 |2

29 Cu 2126|2610 (1

30 Zn 2126|2610 |2

31 Ga 2|26} 2610 21

32 Ge 2126|2610 {22

33 As 2|26} 2610 j23

34 Se 2| 26| 2610 24

35 Br 2| 26| 2610 | 25

36 Kr 212612610 | 26

37 Rb 2|26 2610 | 26 . |1

38 Sr 2126|2610 |26 . |2

39 Y 2} 26| 2610 26 1 2

40 Zr 2|1 26| 2610 26 2. 12

4 Nb 2| 26 2610 | 26 4. |1

42 Mo 2126|2610 | 26 5. |1

43 Te 2126|2610 | 26 6. (1

44 Ru 2|1 26| 2610 |26 7. |1

45 Rh 2| 26| 2610 | 26 8. |1

46 Pd 2| 26| 2610 | 26 10" 0

47 Ag 2126 2610 | 2610 1

48 Cd 2| 26| 2610 | 2610 1

49 In 21 26} 2610 | 2610 21

50 Sn 2| 26| 2610 | 2610 22

51 Sb 2|1 26| 2610 § 2610 3

52 Te 2| 26| 2610 | 2610 24

53 . 2| 26| 2610 | 2610.. | 25

54 Xe 21 26| 2610 | 2610.. | 26

* Note ireguiarity.

Source: Adapted from Laurence S. Foster's compilation in the Hand-
book of Chemistry and Physics (Boca Raton, Fia.: CRC Press,

1980), p. B-1.

asking himself a question: How otherwise would he expect
to find elementary particles arranged? The reader probably
does not have an answer, butmight, if pressed, retort: “Any
one of a million possible ways, but why yours?” The reader
who answers this way has made some assumptions about
the nature of space-time and matter, probably without even
realizing it. He has assumed that “things,” like protons, are
pretty much free to move about in “empty space,” except
insofar as certain universal “forces,” like “charge,” “gravi-
tation,” and the like might prevent them from doing so.
These are assumptions that have no place in thinking about
such matters as these.

Take one example, which is relevant to the thinking that
went into the development of this nuclear model:

(c) 12 points of cube forming the cuboctahedron

Figure 3

FORMING THE CUBOCTAHEDRON FROM THE CUBE
The cube is shown (a) with the circumsphere, which
is internally tangent to the 8 vertices, and insphere,
which is tangent to the interior of the 6 faces. The
midsphere (b) is tangent to the midpoints of the 12
edges. When these 12 points are connected (c), the
figure formed is the Archimedean solid known as the
cuboctahedron. The midsphere of the cube is the
circumsphere of the cuboctahedron.
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There is a certain maximum-minimum relationship in
electrical conductivity. There is the impedance of free space
of 376 ohms, a value used for the tuning of antennae, for
instance. There is also the “natural resistance” of 25,813
ohms, demonstrated by Nobel prize winner Klaus vonKlitz-
ing in his experiments with very thin semiconductor sur-
faces (see Fusion, May-jJune 1986, pp. 28-31). The ratio of
the two is 1: 68.5, and when the pairing of electrons is
allowed for, it is seen to be twice this, or 1:137. The same
ratio also appears in the fine structure constant and in the
ratio of the velocity of an electron in the lowest orbit to the
velocity of light. Von Klitzing also found a quantization in
his results. The resistance reached plateaus and appeared
as a step function downward from the maximum, suggest-

ing a discrete relationship between the number of elec-
trons and impedance.

The most important thing to observe is that there is a
continuity of relationship between the impedance of “free
space” (the vacuum) and the resistance found in a thin
semiconductor sheet. The point is elaborated in the accom-
panying article on the subject written by Moon (page 26).
We are led to question how “free” is free space. Indeed,
the very idea of empty space, filled by particulate matter,
must come into question. We look instead to identify the
appropriate geometry or curvature of space-time. A proper
solution would lead immediately to a solution of the puzzle
of superconductivity, and a great many more problems fac-
ing science today.

(a) Octahedron inside
cube

(d) Dodecahedron
inside icosahedron

(b) Cube inside octahedron

Figure 4
THE PLATONIC DUALS
The cube and octahedron are dual, meaning that they fit one inside the other (a, b). Similarly, the icosahedron and
dodecahedron are dual (c, d). The tetrahedron is dual to itself (e). -

(c) Icosahedron inside
dodecahedron

(e) Tetrahedron
inside tetrahedron

. Figure5
The sequence of four solids whose 46 vertices form half of the “Keplerian atom.”

This working model of the four nested solids was made for Moon
by George Hamann out of used offset printing plates. For infor-
mation on obtaining copies, see page 5.
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(b) Divine proportion
division of the b

icosahedron’s triangular
face.

Figure 6
THE OCTAHEDRON INSIDE THE ICOSAHEDRON

The octahedron fits within the icosahedron (a) such
that 6 of the 20 faces of the icosahedron receive ver-
tices of the octahedron. The vertices strike the trian-
gular face of the icosahedron (b) so as to divide the
altitude line in the divine proportion. Thus, a/b =
b/(a + b).
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Figure 7
PERIODICITY OF ATOMIC VOLUME

The periodicity of the atomic volumes (the ratio of
atomic weight/density) of the elements guided the
19th-century German scientist Lothar Meyer in devel-
oping the periodic table. The maxima at atomic num-
bers 3, 11, 19, 37, 55, and 87 identify the Group 1a
elements that begin each period. Notice how minima
occur at or near the atomic numbers 8, 14, 26, 46,
which mark the completed proton shells.

Implications for the Periodic Table ,

We have hinted in some ways—for example, in the case
of the rare earths—how such an arrangement of the nucle-
us might be reflected in the arrangement of extra-nuclear
electrons. It remains the case, however, that the periodicity
of physical and chemical properties, as demonstrated in the
crowning achievement of 19th and early 20th century chem-
istry, the periodic table of the elements, is not the same as
the periodicity of the proton shells. The latter, we have
shown, follow the sequence 8, 14, 26, 46, as determined by
the Platonic solids. The former are governed by the great
periods of 18 and 32, and the small periods of 8, once called
the octets.

Years after the establishment of the periodic table, its
truth was verified by the data of spectroscopy, which estab-
lished that the extra-nuclear electrons are found in shells
(labeled K, L, M, N, and so on), each containing one or
more subshells, designated s, p, d, and f from the appear-
ance of their spectral lines. The “occupancy level” of each
shell and subshell is well established and can be seen in the
electron configurations in Table 1. The ordering of succes-
sive subshellis, as follows,

2 = 2
2,6 = 8
2,6 = 8
10,2,6 =18
10,2,6 =18
14,10,2,6 = 32
24 May-June 1988  21st CENTURY

corresponds to the ordering of the number of elements
that can be seen in the periods (rows) in the table of the
elements—the small and great periods.

What causes this number series is one of the great mys-
teries. Rydberg, one of the early contributors to the devel-
opment of quantum theory, was fond of presenting it in a
manner which the great German physicist of the time, Ar-
nold Sommerfeld, characterized as “the cabalistic form”:

2x12= 2
2x2*= 8
2x3 =18
2x4 = 32,
‘Magic Numbers’

The modern theory of the atom is also premised on an-
other mystery series, this one more aptly named “Magic
Numbers” by its discoverer, physicist Maria Goeppert-
Mayer. Careful observation of the nuclear properties of the
elements showed certain patterns that seemed to abruptly
change at certain key elements. Goeppert-Mayer noticed
that whether we were looking at the atomic number (2),
which telis us the number of protons in the nucleus, or the

- number of neutrons (N}, or the sum of the two, which is

known as the mass number (A), there were certain so-called
Magic Numbers that identified abrupt changes in nuclear
properties. These numbers are:

2,8,20,28,50, 82, 126.
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Figure 8
OTHER PERIODIC PROPERTIES OF THE ELEMENTS
Many other physical properties of the elements, in-
cluding compressibility (bottom line), coefficient of
expansion (middle), and reciprocal melting point (top),
obey the same periodicity as atomic volume.

An element containing such a Magic Number either as its
atomic number (for example, 2 for helium, or 82 for lead),
or its neutron number (also 2 for helium, or 8 for oxygen,
or 126 for lead or bismuth), or its mass number (for exam-
ple, 20 for neon, or 28 for silicon) is likely to manifest an
abrupt change in nuclear properties from its nearby neigh-
bors in the periodic table. This is not a hard-and-fast rule,
but a tendency.

But what can be the cause for this strange series of num-
bers? Can it be that the same Creator who built into the
structure of the atom the simple and harmonious arrange-
ment of the 92 protons, which we have shown here, would
leave to chance the configuration of the rest of his creation?

A Hypothesis on Neutron Configuration
| could not believe this, and so | struggled with the prob-
lem, until | had a solution. I had already noticed one pecul-
iar thing about the Magic Numbers—the first-order differ-
ences of part of the sequence corresponds to the numbers

of the edges of the Platonic solids. Thus, 8 — 2 = 6, the

edges of the tetrahedron; 20 — 8 = 12, the number of edges
for the cube and octahedron; and, skipping 28, 50 — 20 =
30, the number of edges in the icosahedron and dodeca-
- hedron. :

It was necessary, also, that the neutrons have a lawful
place in the structure of the nucleus, for otherwise, why
should some isotopes exist in abundance and others not?
However, lacking charge, the neutrons would not have to
have the same degree of symmetry as the protons. It was
while considering the question why iron and palladium,
two key singularities in the proton structure of the nucleus,
_ did not appear as Magic Numbers that the idea for a lawful

.placement of the neutrons within the hypothesized struc-

ture of the proton shells came to me. ‘

Figure 9
THE TWIN DODECAHEDRA
To go beyond palladium (atomic number 46), which
is represented by the completed dodecahedron, an
identical dodecahedron joins the first dodecahedron
at a face. When fully joined in this way, the two figures
represent the nucleus of radon (atomic number 86).

Figure 10
HINGING THE TWIN DODECAHEDRA
To go beyond radon (atomic number 86), the twin
dodecahedra open up, using a common edge as if it
were a hinge.

Figure 11
BREAKING THE HINGE
To create 91-protactinium, the hinge is broken at one
end, staying attached at the other end.

Iron has 30 neutrons, palladium 60. The sum of the edges
of the tetrahedron (6), cube (12), and octahedron (12) is
equal to 30. The tetrahedron fits within the cube such that
the midpoints of its edges lie one on the center of each
cubic face (Figure 12). Within the tetrahedron, can sit an-

Continued on page 28

*
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DR. ROBERT J. MOON:

‘Space Must Be Quantized’

Robert J. Moon, professor emeritus at the University of
Chicago, discussed the idea that led to his hypothesis of
the geometry of the nucleus in an interview published in
Executive Intelligence Review, Nov. 6, 1987. His remarks are
excerpted here.

The particular experiment that provided the immediate
spark leading to the development of my model of the nu-
cleus was one by Nobel Prize winner Klaus von Klitzing.

. Von Klitzing is a German who looked at the conductivity
of very thin pieces of semiconductor. A couple of elec-
trodes are placed on it. The electrodes are designed to keep
aconstant current running through the thin semiconductor
strip. A uniform magnetic field is applied perpendicular to
the thin strip, cutting across the flow of the electron current

Philip Ulanowsky

in the semiconductor strip. This applied magnetic field,
thus, bends the conduction electrons in the semiconductor
so that they move toward the side. If the field is of sufficient
strength, the electrons become trapped into circular orbits.

This alteration of the paths of the conduction electrons
produces what appears to be a charge potential across the
strip and perpendicular to the original current flow, pro-
ducing a resistance. If you measure this new potential as
you increase the magnetic field, you find that the horizontal
charge potential will rise until a plateau is reached. You can
continue to increase the magnetic field without anything
happening, within certain boundaries, but then once the
magnetic field is increased beyond a certain value, the po-
tential will begin to rise again until another plateau is
reached, where, within certain boundaries, the potential
again does not increase with an increasing magnetic field.

What is being measured is the Hall resistance, the voltage
across the current flow, horizontal to the direction of the
original current, divided by the original current.

All of this was done by von Klitzing at liquid hydrogen
temperatures to keep it cool and prevent the vibration of
particles in the semiconductor lattice, a silicon semi-
conductor. The currentwas kept constant by the electrodes
embedded in it.

Under these special conditions, as the current is plotted
as a function of the magnetic field, we find that plateaus
emerge. There are five distinct plateaus. At the highest field
strength the resistance turns out to be 25,812.815 ohms. As
we reduce the field, we find the next plateau at 12,906 ohms,
and so on, until after the fifth, the plateaus become less
distinct.

The theory is that the strong magnetic field forces the
electrons of a two-dimensional electron gas into closed
paths. Just as in the atomic nucleus, only a definite number
of rotational states is possible, and only a definite number
of electrons can belong to the same state. This rotational
state is called the Landau level.

What we have here is a slowly increasing magnetic induc-
tion, and resistance increases until plateau values are found.
At these values, there is no further drop in voltage over a
certain band of increased magnetic induction. Some elec-
trons now appear to travel through the semiconductor as if
it were a superconductor.

Dr. Robert J. Moon: “I began to conclude that there must
be structure in space, and that space must be quantized.”
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The question | asked myself was, why at higher field
strengths did no more plateaus appear? Why did no higher
plateau appear, for example, at 51,625 ohms? At the lower
end it was clear what the boundary was—at the point at
which six pairs of electrons were orbiting together, the
electrons would be close-packed, but the magnetic field
was too weak to create such a geometry. However, ! asked
myself what the limit was at the upper end.

This was what led to my model of the structure of the
atomic nucleus. | started out by considering that the orbital
structure of the electrons would have to account for the
occurrence of the plateaus von Klitzing found, and | real-
ized that the electrons had to be spinning together in pairs
as well as orbiting. That was the significance of the upper
boundary occurring at the value of 25,000-ptus ohms.

| first concluded that this happens because the electron
has a spin. It spins around its axis and a current is produced
by the spin, and the spinning charges produce a little mag-
net.

According to Ohm's law, the current is equal to the field

divided by the resistance, so that the resistance is equal to.

the field divided by the current. Von Klitzing found that the
resistance in the last plateau was 25,812 ohms. | wanted to
find out why this was the last distinct plateau.

First of all, | realized that the electrons seem to like each
other very well. They travel around in pairs, especially in
solid-state materials such as semiconductors. The spins will
be in opposite directions, so that the north pole of one will
match up with the south pole of the other.

Well, as long as we are limited to a two-dimensional space,
then we see that by the time we get six pairs orbiting, we
will have close packing. We see a geometry emerging, a
structure of the electron flow in the semiconductor.

Now, the Hall resistance is determined by Planck’s con-
stant divided by the ratio of the charge squared. Butwe also
find this term in the fine structure constant. Here, however,
the Hall resistance must be multiplied by the term (i, X )
[c=the velocity of light]; in other words, we must take the
ratio of the Hall resistance to the impedance of free space.
We can look at this as a ratio of two different kinds of
resistance, that within a medium to that within free space
itself.

This led me to look for a three-space geometry analogous
to that which 1 had found in the two-dimensional space in
which the Hall effect takes place. | began to wonder how
many electron pairs could be put together in three-space,
and | saw that one might go up to 68 pairs plus a single
electron, in order to produce 137, which is the inverse of
the fine structure constant.

Well, that's the way ideas begin to grow. Then itbecomes
very exciting. And then you begin to wonder, why these
pairs, and why does this happen?

Space Has a Structure
The velocity of light times the permeability of free space
is what we call the impedance of free space. There is some-
thing very interesting about the impedance of free space.
According to accepted theory, free space is a vacuum. If

this is so, how can it exhibit impedance? But it does. The
answer, of course, is that there is no such thing asavacuum,
and what we call free space has a structure.

The impedance of free space is called reactive imped-
ance, since we can store energy in it without the energy
dissipating. Similarly, radiation will travel through a vac-
uum without losing energy. Since there is no matter in free
space, there is nothing there to dissipate the energy. There
is nothing for the radiation to collide with, so to speak, or
be absorbed by, so the energy just keeps there. This is what
we call the reactive component.

It is “reactive,” because it does not dissipate the energy,
but is passive. And this equals 376+ ohms. This reactive
impedance is one of the important components of the
equation of the fine structure constant.

The equations for the fine structure constant will always
involve the ratio, 1:137, and actually this ratio, as Bohr looked
at it, was the ratio of the velocity of the electron in the first
Bohr orbit to the velocity of light. That is, if you multiply the
velocity of the electron in the first Bohr orbit of the hydro-
gen atom by 137, you get the velocity of light.

The orbiting electron is bound to the hydrogen atom
around which itis orbiting. This stuck in my mind for several
years. Immediately as you begin looking at this ratio, you
see that this is identical with the impedance in a material
medium, like the semiconductor von Klitzing experi-
mented with, compared to the permeability of space.

No Empty Space

Since the Hall resistance is dissipative, then we have here
a ratio between two different kinds of resistance, a resis-
tance within a material medium and aresistance of “space.”
That being the case, we are entitled to seek a geometry of
space—or in other words, we are no longer able to talk
about “empty space.” From looking at von Klitzing's exper-
iment, | was led to these new conclusions.

This is the equation for a, the fine structure constant:

1/a = 2h/(e*H,0).

Another conclusion | was able to draw, was why the num-
ber “2” appears in the fine structure constant. Well, itturns
out that the 2 indicates the pairing of the electrons. And
when you get this ratio, this turns out to be 1:137. So you
have the ratio of the impedance of free space, which is
nondissipative, over the impedance in a material media, as
measured by von Klitzing, which is dissipative, giving you
approximately 1:137. We have seen major advances in
semiconductors in recent decades which permit us to make
very accurate measurements of the fine structure constant.

Today, we have even better methods based on supercon-
ductors. In a superconductor, the impedance will be very
low, like that of free space. Thereis no place for the electron
in the superconductor to lose energy.

As a result of this, | began to conclude that there must be

structure in space, and that space must be quantized. Oof

course, | had been thinking about these ideas in a more
general way, for a long time, but looking at von Klitzing's
work in this way, allowed me to put them together in a new
way, and make some new discoveries. -
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other smaller tetrahedron, dual to its parent (Figure 13).
The connection of the midpoints of the edges of the other
four solids creates, respectively, the cuboctahedron—from
the cube or octahedron—and the icosidodecahedron—
from the icosahedron or dodecahedron (Figure 14).

These are the key concepts of geometry needed to see
how the neutrons are lawfully placed on the already existing
structure of the nucleus. Once this is done, it can be seen
that the periodicity of Meyer and Mendeleyev’s periodic
table is completely coherent with this new view of the nu-
cleus. The points of completion of the proton shells define
the points of greatest stability of the nucleus, reflected in

the abundancy of these elements, while the completion of
the neutron shells corresponds to the ends of the periods
of the periodic table. The neutron shells also have a highly
symmetric and sometimes complete configuration in the
elements for which the proton shells are complete. This is
all readily seen in the table of neutron configurations | have
hypothesized (Table 2).

The structure begins with a helium nucleus, or alpha
particle—a tetrahedron containing two protons and two
neutrons at its four vertices. To go on to the third element,
lithium, the protons must move outward to start building
up their first shell on the vertices of a cube. The two neu-

Figure 12
TETRAHEDRON INSCRIBED IN A CUBE
Every cube implies a tetrahedron. Four diagonally op-
posite vertices of the cube form the vertices of the
tetrahedron. The six edges of the tetrahedron form
the diagonals of the cube’s faces, and their midpoints
are equivalent to the center of the cubic faces.

vr

» Figure 13
ALPHA PARTICLE AND TETRAHEDRON
The smaller dual tetrahedron, which represents the
alpha particle, has an edge length only one third that
of its parent.

Figure 14
CUBOCTAHEDRON AND ICOSIDODECAHEDRON
The Archimedean solid known as the cuboctahedron can be derived by connecting the midpoints of the 12 edges
of either the cube (a) or the octahedron (b). Similarly, the icosidodecahedron is derived by connecting the midpoints
of either the icosahedron (c) or the dodecahedron (d).
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trons that were on the vertices of the alpha particle have no
need to leave. However, any additional neutrons will place
themselves at the centers of the faces of the cube, whichiis
the same place as the midpoints of the edges of the larger
tetrahedron. (The smaller tetrahedron is called the alpha
particle.) Thus, at 6-carbon-12, there are two neutrons on
the alpha particle and four on the faces of the cube (Figure
15).4 For clarity, here is another example: the proton struc-
ture of 8-oxygen-16 (Figure 16). Of the eight neutrons, two

are on the inner alpha particle and six on the midpoints of
the six edges of the larger tetrahedron (or, the same thing,
the face centers of the cube), marking the completion of
this shell. The eight protons locate on the eight vertices of
the cube. Thus, not only is oxygen highly symmetrical with
respect to its proton configuration, but also one of its neu-
tron shells is complete.

Now, to go on to the end of the period, there are only
two more places where the neutrons can go: thatis, on the

Table 2
PROPOSED NEUTRON DISTRIBUTION CHART
Alpha _Edges of
~ particle Tetrahedron Cube Octahedron Icosahedron

2 Complete period
2 2
2 3
2 3
2 4

5

6
10-Ne-20 4 6 Complete period
11-Na-23 4 6 2
12-Mg-24 4 6 2
13-Al-27 4 6 4
15-P-31 4 6 6
16-8-32 4 6 6
17-Cl-35 4 6 8
18-Ar-40 4 6 12 Complete period
19-K-39 4 6 10 0
20-Ca-40 4 6 10 0
21-Sc-45 4 6 12 2
22-Ti-48 4 6 12 4
23-V-51 4 6 12 6
24-Cr-52 4 6 12 6
§M 4 6@ _ 12 8
9 6 12 12 2
28-Ni-59 — 6 12 12 1
29-Cu-64 — 6 12 12 5
30-Zn-65 — 6 12 12 5
31-Ga-70 — 6 12 12 10
32-Ge-73 -— 6 12 12 "
33-As-75 —_ 6 12 12 12
34-Se-79 —_ 6 12 12 15
35-Br-80 — 6 12 12 15
36-Kr-84 — 6 12 — 30 Complete period
37-Rb-85 — 6 12 12 18
38-Sr-88 —_ 6 12 12 20
39-Y-89 — 6 12 12 20
40-Zr-92 — 6 12 12 22
41-Nb-93 — 6 12 12 22
42-Mo-96 — 6 12 12 24
43-Te-98 — 6 12 12 25
44-Ru-101 — 6 12 12 27
f_45 Rh-103 — 6 12 12 28
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remaining two vertices of the inner alpha particle. This is
the configuration for 10-neon-20, the noble gas that ends
the first small period. A similar situation, in which the neu-

_ tron shells are completely filled, occurs with respect to the
noble gases 18-argon-40 and 36-krypton-84, the latter with
a slight perturbation. .

Atiron, the inner tetrahedron ceases to exist as a config-
uration for the neutrons, though, as we know, the config-
uration appears again as a mode of emission in the alpha
decay of the heavier elements. Iron has an extraordinary
symmetry for both its proton and neutron configurations,
as shown in Table 2. Finally, at palladium, the symmetry is

- perfect and complete. The proton shells are entirely filled
and so are those of the neutrons. Note that the neutrons
always remain on the inside of the nucleus, one level deep-
er than the protons. Their existence outside this realm is
precarious, where they have a half-life of only about 12
minutes.

The neutron configuration beyond palladium is struc-
tured on the same model, though it is not as simply repre-
sented since the figures making up the proton shells do not
close until 86-radon. But the continuation of the same sys-
tem all the way through the last natural element can be
simply accounted for.

To close the case, let us take the last element, uranium.
How, one might ask, can we account for uranium-238, which
has 146 neutrons—considerably more than twice the 60

.found in palladium? Recall that there were a few empty
spaces left over on the faces of the icosahedron. When the
octahedron was fit inside, its vertices took up only 6 of the
20 faces, leaving 14 open. Counting both “halves” of the
uranium nucleus, that leaves 28 extra locations for the neu-
trons to fit symmetrically; 26 of them are used to create
uranium-238, the preferred configuration. But uranium-240,
the heaviest isotope of the last naturally occurring element,
with a half-life of 14.1 hours, takes up all those possible
places with its 148 neutrons.

Laurence Hecht, a geometer by avocation, worked closely
with Robert |. Moon to elaborate Moon'’s hypothesis for the
geometry of the nucleus.

1. Dr. Moon developed his theory of the nucleus in spring 1986, shortly after his
75th birthday, while working at the Fusion Energy Foundation in Leesburg,
Va. For a personal account of the development of his theory, see his two-
partinterview in the Executive Intelligence Review, Oct. 30, 1987, p. 31, and
Nov. 8, 1887, p. 18.

2. All the Platonic solids can be formed by the intersections of great circles on
a sphere, the great circle being the least-action path on the surface of the
sphere, and the sphere the minimal three-dimensional volume created by
elementary rotational action. The best way to see this is to consider the
intersections of the great circles in a Torrianian, or Copernico-Pythagorean
planetarium [cf. Johannes Kepler, Mysterium Cosmographicum, Dedicatory
letter, trans. A.M. Duncan (New York: Abaris Press, 1981).]

In the device constructed by Giovanni Torriani to demonstrate Kepler's
nestdd solid model for the solar system, the vertices of the regular solids are
formed by the intersections of great circles. Three great circles intersect
doubly to form an octahedron. Six great circles intersect triply in 8 places to
form the vertices of a cube and doubly in 6 places over the faces of the cube.
Fifteen great circies intersect 5-at-a-time in 12 locations, 3-at-a-time in 20
locations, and 2-at-a-time in 30 locations, forming respectively, the vertices
of the icosahedron, dodecahedron, and icosidodecghacdron.

it is interesting that the tetrahedron is not uniguely determined in this
construction, but is derivative from the vertices of the cube.

3. Thedivine proportion, also known as the goiden mean or the golden section,
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Figure 15
PROBABLE LOCATION OF CARBON NEUTRONS
In the author’s scheme, the six neutrons in the carbon
nucleus are positioned as shown: two on the vertices
of the inner tetrahedron, four on the edge midpoints
" of the larger tetrahedron (which are the same as the
face centers of the cube).

O Neutron
@ Proton

Figure 16

PROBABLE LOCATION OF THE OXYGEN-16
NEUTRONS AND PROTONS
Shown here are the likely locations of the eight neu-
trons (open) and eight protons (solid) in the oxygen-
16 nucleus. There is a neutron on all six faces of the
cube and on two of the four vertices of the alpha
particle. Eight protons cover the eight vertices of the
cube.

defines the geometry of growth for living systems, plants and animals alike—
from the seashell, to the leaf arrangement on a branch, to the proportions of
the human body. It is also the characteristic ratio for nonliving processes in
the very large and the small. The divine proportion divides a line so that the
ratio of the full length of a line to its largest segment is proportional to the
ratio of the segments to each other. When a decagon is inscribed in a circle,
the ratio of the radius to an edge is the divine proportion. Designated math-
ematically as ¢, the divine proportion ratio is (V5 + 1)/2 or approximately
1.618.

. This allows a speculation on the relation to extranuclear properties, viz. the

carbon problem. Carbon has a tetrahedral bonding which is conventionally
explained by the fact that the inner 1s orbital is held more tightly, while the
four “valence” electrons do the bonding. Why? Now we can see that the tight
bonding of the inner orbital might be caused by the alpha particle inside. For
carbon, only four of the protons might move to the cube, locating themselves
on the four vertices of the cube which correspond to a tetrahedral symmetry.
These would be the four charges that determine the carbon bond. To main-
tain the charge symmetry, the other two would be held in the original aipha
particle.




