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Editorial 

This issue of the International Journal of Fusion Energy focuses on 
the problem of macroscopic motion in a plasma and its theoretical 
explanation. Our contributors reflect two contrasting approaches to 
the problem. 

Dr. Pouquet, a member of the respected French group working on 
fluid and plasma turbulence at the Observatoire de Nice, presents a 
review of their work on plasma turbulence from a statistical and 
microscopic standpoint. This approach to the problem has yielded 
some fruitful insights into the general nature of and basic tendency 
for highly interacting continua, like plasmas, to form macroscopic 
structures out of both field variables (fluid flow and magnetic field). 

In the second article Dr. Witalis, of the Defense Research Institute 
in Sweden, attacks the problem of large-scale rotational motion from 
the standpoint of macroscopic equations of motion. The approach he 
elaborates in his article has found application in other devices, like 
the tokamak, that also demonstrate the very general tendency for the 
generation of large structure out of small in almost every plasma 
regime. 

Authors wishing to submit manuscripts for publication in IJFE should 
send two (double-spaced) copies of their work with stats of all figures 
to Managing Editor, The International Journal of Fusion Energy, 
Fusion Energy Foundation, Box 1943 GPO, New York, N.Y. WOOL 
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Abstract This paper reviews recent results obtained in magneto­
hydrodynamic (MHD) turbulence at high kinetic and magnetic 
Reynolds numbers for isotropic, homogeneous, and incompressible 
flows. The results are based on the extension to MHD of the two-point 
closures and direct numerical simulations of the primitive equations de­
veloped for hydrodynamical turbulence. Closures are particularly useful 
to investigate questions such as the directions of cascades (which in 
MHD can be toward both small and large scales) and to analyze non­
local effects, i.e., interactions involving widely separated scales. Some 
of the closure-based predictions can then be tested by direct numerical 
simulations. Both three- and two-dimensional MHD problems are dis­
cussed for magnetic Prandtl numbers that are smaller than or of order 
unity. Particular attention is paid to the generation of large-scale mag­
netic excitation under the action of helicity (nonlinear dynamo) in three 
dimensions or of a negative eddy viscosity in two dimensions. Finally, 
new possibilities for studying large-scale turbulence with the renormal-
ization group technique are evoked. 

INTRODUCTION 
Concepts and techniques that have evolved in fully developed hydro-
dynamical turbulence can be extended to other strongly nonlinear 
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problems. By developed (strong) turbulence is meant a flow for which 
the Reynolds number Rv measuring the relative intensity of the non­
linear term (advection and pressure) to the linear (dissipative) term, is 
extremely large (Ry -*• °°), with many modes excited and interacting. 
With direct numerical simulations, only moderate Reynolds numbers 
have been achieved, of the order of 40 in three dimensions. Two-point 
closure techniques, introduced in particular by Kraichnan, allow a 
study of strong turbulence, with Reynolds numbers of the order of 106 

being handled in the numerical integration of Markovian closure 
equations. But closures should be viewed more as a model of the 
original problem than an approximation in which one controls the 
error. In the search for a small development parameter, renormali-
zation group techniques1"3 have recently been introduced to turbu­
lence and certainly look promising for study of large-scale (infrared) 
properties of the flow. 

A key concept of hydrodynamical turbulence is the cascade of 
energy: away from the energy-containing (large-scale) region and the 
dissipative (small-scale) region, there exists for fully developed turbu­
lence a range called the inertial range in which the energy is simply cas­
cading, step by step, to small scales (large wave numbers). The 
assumption that the energy spectrum E(k) in the inertial range depends 
only on the rate at which energy is transferred and on the wave 
number (locality of transfer), immediately yields4 E(k) ~ /C5/3. Two-
point closures can be viewed as a quantitative formulation of the 
Kolmogorov cascade4 and have been reviewed extensively.5"9 In this 
paper, the extension of closure and numerical techniques to homo­
geneous, isotropic, and incompressible magnetohydrodynamic 
(MHD) turbulence is reviewed. The main question we shall try to 
answer concerns the way in which the energy cascade just described is 
modified for a conducting fluid. Some of the results, in particular 
those concerning the nonlinear dynamo, have already been reviewed 
elsewhere.10- u 

The MHD equations for an incompressible conducting fluid read 

d \/d t + (v • V)v = -Vp + vV2v + (b • V)b + f, (1.) 

a b / 3 1 + (v • V)b = (b • V)v + W2b + fM, (2) 
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V • v = 0; V • b = 0, (3) 

where v is the velocity field, b the magnetic field, v the viscosity, and A 
the magnetic diffusivity; fv a n d / M represent source terms that may be 
included in the equations. If U0 is a typical large-scale velocity (at scale 
L ) , the kinetic and magnetic Reynolds numbers are, respectively, 

Ry=U0L0/v, RM=U0Lg/L (4) 

The quadratic spectra that can be introduced in homogeneous iso­
tropic MHD turbulence are the kinetic energy Ev(k), the magnetic 
energy EM(k), and the cross-correlation Effk) spectra, with 

J^oo oo 

Ev{k) dk = <v2>; EM(k) dk = <b2>, (5) 

r°° 
I EF(k) dk = <v • b>. (6) 

If <v • b> = 0 at t = 0, it remains so at all times. When the flow is 
not mirror symmetric, one should include in the various covariance 
tensors an antisymmetric part12 and correspondingly introduce the 
kinetic helicity Hv(k) and magnetic helicity HM(k) spectra with 

J Hv(k) dk = <v • curl v>, If*(k) dk = <a • b>, (7) 

0 J 0 
where a is the vector potential and b = curl a (for details, see Ref. 13). 

Experiments 
Conducting fluids available in the laboratory have a low magnetic 
Prandtl number: 

Pr
M m v/X (8) 

(for example, Pr
M~ 10"7 for mercury at room temperature). Moreover, 
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Figure 1. Magnetic energy spectrum obtained by the author from observations of the 
solar photosphere at the center of the disk at Kitt Peak National Observatory with J. 
Haryey and W. Livingston (September 1973). 

in a typical experiment, the magnetic Reynolds number is smaller than 
unity so that, for most scales, the induction equation reduces to its 
(Joule) dissipative part. Experiments of interest for strong MHD 
turbulence with RM > 1 are huge, difficult, and expensive.14 On the 
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other hand, large magnetic Reynolds numbers are found in cosmic 
objects: planets and stars are often observed to have an appreciable 
large-scale magnetic field. In the photospheric field of the sun, many 
scales of motions can be resolved with present-day Babcock magneto-
graphs, and isotropic spectra can be computed. Figure 1 shows such a 
magnetic field spectrum taken at the center of the sun at Kitt Peak 
National Observatory, with a 512-channel magnetograph (in 
collaboration with J. Harvey and W. Livingston). A review of small-
scale solar magnetic fields is given in Refs. 15 and 16. Kinetic and 
magnetic energy spectra in the solar wind can probably also be ob­
tained from satellite data.17 Finally, in cosmic rays, the distribution of 
energy among wave numbers seems to obey a power law18 with a 
spectral index y in the range 0 < y < 3. The question arises whether 
such power laws are of a universal nature and whether they can be 
linked to a turbulent origin. 

Numerics 
Another source of "experimental data" widely used today is given by 
numerical calculations, thanks to the versatility of computers. In 
developed hydrodynamical turbulence, the ratio of energy-containing 
scales to dissipative scales varies approximately as the 3/4 power of the 
kinetic Reynolds number. For a three-dimensional simulation of 
turbulence, the amount of needed storage rapidly exceeds the capacity 
of present-day computers. To study a flow at the highest Reynolds 
number possible, one restricts oneself to the incompressible, isotropic, 
and homogeneous case for which periodic boundary conditions are 
appropriate. Spectral methods seem best suited in that case.19 The 
spectral method of integration consists simply in writing the original 
equations in Fourier space, and calculating the convolution through a 
double three-dimensional (3D) or two-dimensional (2D) fast Fourier 
transform. One keeps only a finite number of modes; initial condi­
tions are generally Gaussian, with a prescribed energy spectrum. 
Averages are taken over spherical shells of equal width. Aliasing 
errors, arising from spurious interactions with high out-of-core wave 
numbers, can be removed,20 but are found to be negligible both in 
hydrodynamical and in MHD calculations performed so far. 

The main difficulty of such a calculation is in properly handling the 
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huge amount of data: for the 323-point MHD code,21 the total storage 
needed was of the order of 2 x 106 words (of 64 bits) so that the code 
constantly used peripheral storage.22 Bigger codes may become 
inoperative with the present method because too much machine time is 
idle while data are transferred from disks to the central core where 
they are actually processed. For a review of spectral calculations of 
Navier-Stokes turbulence, see, for example, Ref. 23. Direct numerical 
simulations of 2D MHD have been performed by Tappert and 
Hardin,24 Fyfe, Montgomery, and Joyce,25 and Orszag and Tang.26 A 
spectral method was also used recently27 in the study of two-
dimensional Langmuir collapse in type III solar radio bursts. 

Theories 
Various theoretical tools are available in the study of turbulence. 
Mathematical studies stand alone, as their results are definitive but 
scanty.9 The central problem remains to demonstrate the possibility of 
obtaining singularities in a finite time in the Euler (inviscid Navier-
Stokes) 3D equation. The results so far state that the solution remains 
regular up to a finite time depending on initial conditions. This result 
was extended to MHD by Sulem.28 For a viscous fluid, global regular­
ity in time of the 3D Navier-Stokes equations (and MHD) has not yet 
been shown; however, Scheffer29 has proved that singularities, if any, 
are very small in the sense of the Hausdorff dimension: their support 
has a time dimension smaller than 1/2 and a space dimension smaller 
than unity, making such singularities unobservable by present tech­
niques measuring velocities along a line. It would be interesting to 
extend Scheffer's results to MHD. This situation is to be opposed to 
the one in Langmuir collapse. Glassey30 has shown that for the cubic 
nonlinear Schrodinger equation, global regularity in time obtains in 
dimension one (d = 1) for which soliton solutions are known, but a 
blow-up of the solution obtains at a finite time for d > 2. 

Quasilinear theory for weak plasma turbulence has proved very 
fruitful.3118 As the amplitude of the wave grows, one progressively 
enters the realm of strong turbulence. A fascinating breakthrough has 
been obtained in the study of nonlinear equations with the occurrence 
of solitons.3233 They have blossomed in many fields of nonlinear 
physics, but not all nonlinear equations can be reduced to a soliton-
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type equation like the Korteweg de Vries equation! Two approaches to 
the strongly nonlinear problem can be envisaged: approximations 
(expansion in a small parameter) and modelization (one-dimensional 
models or more generally, two-point closure techniques). In strong 
turbulence, there is no known development parameter at present, 
except time. 

Approximation methods, however, have gained new vigor with the 
introduction by Forster and co-workers2 of the renormalization group 
technique to turbulence (see concluding section of this paper). We 
shall be concerned mainly with the two-point closure techniques de­
scribed in the next section. Results for three-dimensional magneto-
hydrodynamic turbulence obtained with closures and with direct 
numerical simulations are given in the section entitled "Results in 3D 
MHD'.The magnetic Prandtl number (8) is equal to unity in all cases 
except for the subsection entitled "Variation with Magnetic Prandtl 
Number." The main results concern the Alfven effect (quasiequiparti-
tion of kinetic and magnetic energy in the small scales) and the 
dynamo effect (growth of large-scale magnetic field when the flow 
contains helicity). The 2D MHD case is dealt with in the next section; 
it is shown in particular that 2D MHD may have strong similarities in 
the small scales to 3D turbulence and could possibly be taken as a 
model of intermittency. In the last section of the paper, difficulties of 
current turbulence research are evoked. Perspectives of future 
research are also given, in particular the possibility of calculating 
large-scale properties of turbulence with the renormalization group 
technique. 

CLOSURE TECHNIQUES 
Method 
For the purpose of exposition, let us write the following symbolic 
equation: 

dXldt = XX, (9) 

which stresses the main source of difficulty in the Navier-Stokes (NS) 
and MHD problems, namely, the nonlinearity. In MHD, X would 
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represent the velocity and the magnetic field. We assume isotropy, 
homogeneity, and incompressibility for the X field. The linear (dissi-
pative) term is omitted since it poses no particular problem. The deri­
vation can also be performed for more general cases. The stochasticity 
assumed in Eq. (9), through random initial conditions or random 
forces, can be seen as arising from the nonlinearity: two initial condi­
tions identical except in the small scales become uncorrelated in a time 
of the order of the turnover time. This has important consequences in 
meteorology: the lack of weather data on scales smaller than the 
average distance between meteorological stations prevents weather 
prediction (even with an idealized accurate model) to be made for time 
longer than a predictability time of the order of two weeks34 (see also 
Ref. 79). 

In a statistical theory of turbulence, one is interested in the deter­
mination of the various moments of the X field. In a homogeneous 
and isotropic situation, we can assume <X> = 0 without loss of 
generality: a uniform velocity field can be eliminated in a Galilean 
transformation, whereas a uniform magnetic field has nontrivial 
effects on small scales (Alfven waves) but would break the isotropy 
assumption. From (9), the equations for the second- and third-order 
moments are 

d <XX>/dt = <XXX> (10) 

and 

d <XXX>/dt = <XXXX>. (11) 

The fourth-order cumulant <XXXX>C is defined as 

<XXXX>C = <XXXX> - <XX><XX>, (12) 

where indices and sums are omitted. 
Each new equation in the hierarchy of moments brings a new un­

known, and one needs an additional physical assumption to close the 
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stochastic problem. For a field with Gaussian statistics, one has 

<XXXX>c = 0. (13) 

Take Gaussian initial conditions. The quasinormal (QN) approxi­
mation consists in assuming that Eq. (13) holds for all times and in 
Markovianizing the solution of Eq. (11) thus obtained. This approxi­
mation is exact for small times to order t3 as can be seen by making a 
Taylor expansion in time of Eq. (9) (see, for example, Ref. 35). This 
approximation yields negative energy spectra.36' 37 Indeed, the zero 
fourth-order cumulant assumption deprives the triple correlation 
(transfer) function appearing in Eq. (10) of a relaxation mechanism.8 

One may simulate this relaxation by expressing the unknown fourth-
order cumulant in terms of a linear relaxation of third-order 
moments: 

d <XXX>/dt = <XX> <XX> - n(<XX>) <XXX>, (14) 

where \x is a relaxation operator depending only on second-order 
moments and whose expression remains to be determined. 

Eddy-Damped Quasinormal Markovian 
Approximation (EDQNM) 
With the relaxation of triple correlations introduced in Eq. (14) and 
once Markovianization in solving Eq. (11) has been performed, the 
hierarchy of moments is closed at the level of the energy spectra. 
Various closures can be obtained by different choices of the eddy-
relaxation operator \x. For example, it may be determined by pheno-
menological arguments: The two local characteristic times one can 
write in hydrodynamical turbulence are the viscous damping time 
(vk2)'1 and the eddy turnover time (k3E(k))'1/2 for an eddy of scale 
/ = k'1 and energy v;

2~ kE(k). By taking 

lu(k) = vk* + [kiE(k)Y'1, (15) 
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one obtains the eddy-damped quasinormal Markovian (EDQNM) 
approximation,38 which leads to a -5/3 Kolmogorov range. In MHD, 
another characteristic time can be constructed, the Alfven time 
(kb0)'\ where b0 is the rms large-scale magnetic field. For large 
enough wave numbers, the Alfven time will be shorter than the eddy 
turnover time and nonlinear transfer will be dominated by Alfveu-
wave exchanges between kinetic and magnetic energy. This is thought 
to modify the Kolmogorov spectrum39 from a -5/3 to a -3/2 law. The 
following choice for the relaxation operator40: 

yik) = (v + X)k2 + C1[ka(&'(k) + EM(k))]U2 

+ C2[ f E"(p)dp]1" (16) 
Jo 

indeed gives a kinetic and magnetic energy inertial range in -3/2 (see 
3D MHD results below). As the problem treated grows in complexity, 
the degree of arbitrariness in the choice of the relaxation operator of 
triple correlations \x grows also. It must be stressed, however, that, 
from a qualitative point of view (indication of the direction of the cas­
cade, for example), the precise choice of \x may not matter so much. 
Even the choice \x = const yields interesting information,41 and is 
easier to handle for mathematical studies.42 

Remark 
The relaxation operator \i can also be determined through the intro­
duction of an auxiliary problem,43 namely, the advection of a test field 
by a turbulent velocity field—hence the name of this model, the test 
field model (TFM) introduced by Kraichnan.44 An MHD version of 
the TFM has not been written to date but would probably yield essen­
tially the same results as the EDQNM: one can show that the latter 
model can be recovered by a simplification of the former for hydro-
dynamical turbulence.45 

Non-Markovian two-point closures have been introduced in hydro-
dynamical turbulence, in particular the direct interaction approxi­
mation (DIA) of Kraichnan.46 The DIA corresponds to a partial 



FULLY DEVELOPED MHD TURBULENCE 49 

resummation of diagrams appearing in a formal expansion of the 
Navier-Stokes equation. In the DIA, the nonlinear vertex is not 
renormalized.47"4935 In the case of nonhelical MHD, the expansion 
was formally carried out by Lee50; it reproduced, in its simplest form, 
results obtained by Chandrasekhar. However, the DIA treats 
improperly the advection of small-scale eddies by large scales.51 The 
TFM was, in fact, introduced to cure this defect. 

Nonlocal Expansions 
The EDQNM equations, with <v • b> = 0, are given in Ref. 40 for 
three-dimensional (3D) helical MHD and in Ref. 52 for 2D MHD. The 
nonhelical 3D MHD closure equations are also found in Refs. 53 and 
54. One obtains a set of coupled integrodifferential equations for the 
kinetic and magnetic energy (and helicity in 3D) spectra. In the non­
helical case, these equations are of the form (omitting dissipative and 
forcing terms) 

dE"(k)/dt = r(k,p, q) (17) 

= J dp dq [A afs\k, p, q)E<i{p)E'{q) - W\k, p, q)E?(q)E"(k) ], 
J k=p+q 

where in the expression for the nonlinear transfer T°(k, p, q), the 
superscripts a, (],y= For Mdenote a kinetic or magnetic energy spec­
trum and where the triad interaction with k = p + q stems from the 
convolution of the nonlinear term of Eqs. (1) and (2) in Fourier space. 
The first term on the r.h.s. of (17) is an emission term (the A coeffi­
cient can be shown to be positive), and the second term, linear in 
E°(k), is called an absorption term. 

The transfer is said to be local if most of the nonlinear interactions 
at mode k come from wave numbers of roughly the same size [as 
depicted in Figure 2(a)]. This is the case for 3D hydrodynamical turbu­
lence in the inertial range.55 However, in MHD, nonlocal effects corre­
sponding to the interaction of modes of widely separated scales 
[Figure 2(b)] contribute in an important way to the nonlinear transfer: 
a small-scale hydrodynamic turbulence stretches the lines of a large-
scale magnetic field, thereby producing small-scale magnetic energy; 



Figure 2. Interacting triad in turbulence: (a) local interaction; (b) nonlocal interaction 
involving modes of widely separated scales. 

and if the small-scale turbulence is helical, it also twists the lines of the 
magnetic field, thereby reinforcing the large-scale magnetic field 
(cyclonic event56). Nonlocal effects can be displayed on closure 
equations by making a Taylor expansion in the ratio of small-to-large 
wave numbers [k/p in the case of Figure 2(b)] for the various transfer 
terms.40 For example, in 3D hydrodynamical turbulence, the equation 
for the kinetic energy spectrum, when k <. p ~ q and when only the 
absorption term proportional to Ev(k) is taken into account, reduces 
to 

dEv(k)/dt=-2(v+v )k*E\k). (18) 

The coefficient v , proportional to the energy contained in the small 
scales, is called a turbulent eddy viscosity. One recovers here the 
familiar idea that turbulence, by enhancing the transfer of energy 
from large to small scales, enhances the transport coefficients, and 
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hence the dissipation. This effect is reminiscent of the mass (linear 
term) renormalization of quantum field theory. The eddy viscosity is 
found to be negative in some cases, corresponding to a destabilization 
of the large scales by small-scale turbulence.5257"59 

The numerical integration of the EDQNM closure equations pre­
sents no particular difficulty. Because of (presumably) the existence of 
power-law inertial ranges, one can take an exponential discretization 
in wave number. Nonlocal effects may be included separately.6040 

RESULTS IN 3D MHD 
Absolute Equilibrium Ensemble: A First Hint 
A first investigation of the properties of nonlinear MHD consists in 
studying the nondissipative case. When v — A = 0, several invariants 
of the motion are obtained, some of which are conserved in detail, 
i.e., conserved for each interacting triad (k, p, q). These invariants, 
which are quadratic,61 will therefore survive truncation in Fourier 
space when only a finite number of modes is kept. It can be shown 
that the Navier-Stokes (and MHD) system will then relax to a 
Gaussian equilibrium distribution P{X) ~ exp {~al), where / is a 
linear combination of the quadratic invariants of the problem (listed 
in Table 1 for MHD). 

The interest of studying nondissipative equilibrium lies in the possi­
bility of predicting from them the direction of transfer.62'9 For 3D 
MHD with nonzero magnetic helicity, one obtains magnetic equi­
librium spectra that peak at low wave numbers.13 From this, one can 

Table 1. Quadratic invariants of inviscid (v = X = 0) magnetohydrodynamics. 

Quantity 2D MHD 3D MHD 

Total energy <v2> + <b2> <v2> + <b2> 

Cross correlation <v • b> <v • b> 

Magnetic helicity — <a • b> 
(where b = curl a) 

Squared magnetic potential <a2> — 
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infer that, in the dissipative case, magnetic helicity will transfer to the 
large scales. The 2D MHD case was treated by Fyfe and 
Montgomery,63 who similarly postulated an inverse cascade of squared 
magnetic potential to the large scales (see 2D results below). 

Small-Scale MHD: The Alfven Effect 
A uniform magnetic field couples small-scale kinetic and magnetic 
fields through Alfven waves. In the isotropic case, with a wide range 
of scales, a similar effect is found, the large-scale magnetic field being 
seen by the small scales as uniform. A nonlocal expansion of the 
EDQNM equations shows that the relative energy EK(k) and helicity 
HR(k) at wave number k defined by 

E\k) = E\k) - EM{k) (19) 

and 

HR(k) = Hv(k) - k2HM(k) (20) 

relax to zero in a time (kbo)'1 where b0 is the rms large-scale magnetic 
field. 

A numerical integration of the EDQNM equations confirms that 
result, but shows a slight excess of magnetic energy in the small scales 
probably owing to the fact that velocity gradients directly stretch 
magnetic field lines but act on the velocity field only through the 
Lorentz force. The total (kinetic plus magnetic) energy cascades to the 
small scales and with the choice (16) for the relaxation of triple corre­
lations, a -3/2 range obtains. A measurement of kinetic and magnetic 
energy spectra in astrophysical situations (with high Reynolds 
number) would be of great interest. 

Large-Scale 3D MHD: The Helicity Effect 
In 3D MHD, as for 3D hydrodynamical turbulence, small scales act as 
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a drain of the energy contained in the large scales. A nonlocal expan­
sion of the absorption terms of the EDQNM equations gives results 
similar to Eq. (18) for the kinetic and magnetic energy spectra with 
positive kinetic and magnetic eddy viscosities.40 In the presence of 
helicity, however, another very important nonlocal effect of the small 
scales upon the large scales is observed, the a (or helicity) effect. It is 
found that small-scale residual helicity destabilizes magnetic energy 
and helicity in the large scale K'1 in the following way (with eddy 
viscosities omitted): 

QEv{K)/dt= dHv(K)/dt=0, (21) 

3 EM{K)/d t = aRK2HM{K), (22) 

3 HM(K)/d t = aKEM(K), (23) 

da 
QR - /> Mq) \-H^ ~ q1HM(q)], (24) 

where J> stands for integration on small-scale turbulence. Expressions 
(21) through (24) are obtained from a nonlocal expansion of the 
EDQNM equations.40 This destabilization of large-scale magnetic 
excitation is linked to the inverse cascade of magnetic helicity postu­
lated on the basis of statistical equilibrium.13 A numerical integration 
of the EDQNM equations with a source term of magnetic energy and 
helicity shows that magnetic excitation is transferred to larger and 
larger scales as time elapses (Figure 3), whereas the energy cascades to 
the small scales. 

This inverse cascade of magnetic helicity has interesting conse­
quences for the problem of generation of large-scale magnetic fields. 
It was already known from linear analysis (kinematic dynamo) that 
the kinetic helicity contained in the small scales destabilizes large-scale 
magnetic fields.64' 65 The EDQNM closure allows the study of the full 
nonlinear problem. 

Consider an initial magnetic seed field of intensity b0 imbedded in a 
strong kinetic turbulence with kinetic energy and helicity forcing in a 



Figure 3. The inverse cascade of magnetic helicity (taken from Ref. 40). Kinetic and 
magnetic energy and magnetic helicity are injected at k = 1. 

narrow band of wave numbers but with no magnetic forcing (fM = 0 
in Eq. 2). The kinetic helicity could, for example, stem from rotation 
and stratification. We already have all the necessary ingredients to 
understand how the dynamo actually works. The kinetic and magnetic 
energy [Ev(k) and EM(k)] and the kinetic helicity [Hv(k)] all cascade to 
small scales through nonlinear interactions. Through the Alfven effect 
(stretching of magnetic field lines), magnetic helicity, of which there 
was none initially, is produced in the small scales with HM{k) ~ 
Hv(k)/k2 [see Eq. (20)]. In the large scales, magnetic helicity of the 
opposite sign appears (HM is a pseudoscalar) because of the dynamical 
constraints of conservation of total magnetic helicity. Furthermore, 
the dissipation of magnetic helicity in the small scales caused by Joule 

54 



Figure 4. Magnetic energy spectrum in the turbulent dynamo (taken from Ref. 40). 
Injection of only kinetic energy and helicity at k = 1. Notice the buildup of large-scale 
magnetic energy. 

damping acts as a source of magnetic helicity of opposite sign in the 
large scales. 

This large-scale magnetic helicity, in turn, cascades toward larger 
scales and carries along magnetic energy. By this circuitous process, 
magnetic excitation is produced in scales larger than the kinetic injec­
tion scale. The EDQNM closure indicates that, in the nonlinear 
regime, the motor of this instability is proportional to the relative 
helicity contained in the small scales. For an initial weak magnetic 
energy, the helicity effect reduces to its kinetic part, in agreement with 
previous kinematic studies.6465 The invariance of magnetic helicity 
(for v = A = 0) plays an essential role in this dynamo effect; a pheno-
menological argument can be given to show the effect of magnetic 
helicity on the growth of large-scale fields.40 It must be stressed that in 
isotropic MHD turbulence, it is the large-scale fluctuating energy that 
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is growing. This could be relevant, for example, to the large-scale fluc­
tuating magnetic fields observed in the spiral arms of the galaxy.66 

The dynamo effect was checked on a numerical integration of the 
closure equations. Figure 4 shows a magnetic energy spectrum at two 
different times, with only kinetic energy and helicity injection around 
k = 1. Magnetic helicity is found to grow linearly with time, indicating 
that it cascades to large scales, whereas kinetic energy and helicity 
remain practically constant. 

Direct Numerical Simulation 
Numerical simulations and closure techniques complement each other, 
and particularly so in MHD where laboratory experiments at high 
magnetic Reynolds number are hard to perform (see, however, Ref. 67 
for an experimental verification of the kinematic a effect). Com­
parisons at moderate Reynolds numbers between two-point closures 
and numerical simulations have been done in hydrodynamical turbu­
lence68- 69 and show that closures are satisfactory both qualitatively 
and quantitatively at those Reynolds numbers. It remains to be seen 
whether such good agreement still holds as the Reynolds number is in­
creased together with the size of available computers. 

The time-step scheme used in Ref. 21 to simulate three-dimensional 
helical MHD turbulence is a leap-frog, with a linear term treated im­
plicitly. On the CDC 7600 of the National Center for Atmospheric Re­
search, the 323-point MHD code took roughly six seconds per time 
step. The Reynolds number achieved was of order 40. In such a case, 
no inertial range to speak of can be observed, but global properties of 
the flow (such as the direction of transfer) are given. 

The results obtained in decay calculations [fv = 0, fM = 0 in Eqs. 
(1) and (2)] confirm the theoretical predictions of the closure. In parti­
cular, in the small scales, one observes a slight excess of magnetic 
energy over kinetic energy. Also, magnetic helicity is seen to grow in 
the large scales of the flow. In Figure 5 is represented the magnetic 
transfer spectrum 7*"(k), defined as 

9 EM{k)/d t + kk2EM(k) = T"{k), (25) 

at a typical turnover time for a decay calculation (see Ref. 21 for 



Figure 5. Magnetic energy transfer spectrum for a developed flow with initial maximal 
magnetic helicity and no forcing. Solid line: direct numerical simulation; dotted line: 
EDQNM closure for the same conditions. Notice that magnetic energy is transferred to 
the large scales. 

details). The dotted line indicates the closure calculation under the 
same conditions, and the solid line the numerical simulation. 
Magnetic energy is removed from wave number k ~ 5, where it peaks 
initially, and is transferred to large scales [positive TM(k) for k < 5]. 
For comparison, kinetic energy transfer defined in a similar fashion as 
(25) is plotted in Figure 6, where it is seen to be transferred only to the 
small scales. At moderate Reynolds number, the EDQNM closure for 
3D MHD is in rather good agreement with the direct numerical simu­
lations of the MHD equations, as was also the case for various 
closures in hydrodynamical turbulence. 

The effect of the cross correlation <v • b> on the existence of 
inverse transfer of magnetic helicity was checked with numerical simu­
lations. It is in principle tractable by closures but implies very long 
algebra. As expected from a direct observation of the MHD equa­
tions, the dynamics is slowed down, but the magnetic excitation is still 
seen to be transferred to larger scales. 

Variation with Magnetic Prandtl Number 
Most conducting fluids in astrophysical objects or in the laboratory do 
not have a magnetic Prandtl number Pr

M equal to unity. Kraichnan 



Figure 6. Kinetic energy transfer function. Same conditions as in Figure 5. 

and Nagarajan70 have given a detailed description of possible inertial 
ranges for Pr

M < 1. Numerically, a magnetic Prandtl number differing 
much from unity is difficult to treat because of the wide range of 
scales needed to describe the turbulence. We simulated numerically a 
decay problem with initial maximal magnetic helicity, initial kinetic 
and magnetic energies equal, and a magnetic Prandtl number equal to 
0.2 (RM = 8 with Rv = 40). Although Joule dissipation is five times 
greater than viscous dissipation, the magnetic-to-kinetic energy ratio 
ifj(t) = <b\t)> I <v2(/)> is still found to grow (with a maximum at 
1.4), and inverse transfer of magnetic energy and helicity is still ob­
served for Pr

M = 0.2. For a magnetic Reynolds number of the order of 
4 (Pr

M = 0.1), the energy ratio \^(t) diminishes at all times, indicating 
that magnetic field-line stretching is overwhelmed by Joule dissipation 
at that low magnetic Reynolds number. Figure 7 shows the variation 
of \\> with magnetic Prandtl number at a time when the turbulence has 
developed [the total enstrophy defined in Eq. (26) below having 
reached its maximum]. 

Among the numerical simulations that are envisaged in the future, 
one is particularly worth mentioning. It concerns the possible exist­
ence of a critical magnetic Reynolds number71 above which a seed 
magnetic field may grow spontaneously in strong {Rv -* °°) turbu­
lence with a source term in the equation for the velocity field [/K# 0 in 
Eq. (1)] but with no magnetic forcing [fM= 0 in Eq. (2)]. Calculations 
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Figure 7. Magnetic-to-kinetic energy ratio as a function of magnetic Prandtl number in 
a decay calculation. Initially, n> - <b2> I <v2> is unity. 

with the EDQNM closure72 indicate that this may be the case with the 
critical magnetic Reynolds number, being of order 30 for the non-
helical case. The result could be of some interest in the problem of the 
building of breeder reactors.73 As their size is increased, the magnetic 
Reynolds number in the liquid sodium coolant could cross the critical 
value leading to the appearance of measurable magnetic fields. 
Closure calculations72 indicate that, for a supercritical magnetic 
Reynolds number, one should expect a reduction in the turbulent 
kinetic energy, slight in the large scales but becoming increasingly 
important in the small scales because of Joule dissipation. 

Results in 2D MHD 
The dynamics of 2D MHD turbulence differs from that of the 3D case 
because of the presence of an additional quadratic invariant, the 
squared magnetic potential (see Table 1). Fyfe and Montgomery63 in­
vestigated the nondissipative case and thereof postulated the existence 
of an inverse cascade of magnetic potential to the large scales. A 
numerical simulation in a 32 x 32-point cyclic box was performed 
using a spectral method25 and corroborated such inverse transfer. This 
was also verified on closures52 and was associated with a negative eddy 
viscosity: small-scale magnetic turbulence destabilizes the large-scale 
magnetic potential A. The flux of magnetic potential, when averaged 
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over the small-scale turbulence, is found to be in the same direction as 
the gradient of A, yielding to the heat equation with a negative diffu­
sion coefficient.52 

More recently, attention was focused on the structure of small-scale 
2D MHD turbulence because of possible similarities to 3D turbulence. 
In two dimensions, the Euler equation is known to remain regular for 
all time.74 This can be linked to the conservation of kinetic enstrophy 

Q = <(curl v)2> 

in the inviscid case. Since this conservation is broken by the 
Lorentz force in MHD, it was therefore conjectured that nondissi-
pative 2D MHD could blow up in a finite time,52 just as 3D turbulence 
is thought to do (this has not yet been proved; see Ref. 9 for a review 
of the mathematical situation of turbulence). A numerical integration 
of the EDQNM equations indicates that such a blow-up of total en­
strophy is plausible in the limit of infinite Reynolds numbers, and a 
direct numerical simulation on a 256 x 256 grid26 confirmed this possi­
bility. 

The closure also predicts that this blow-up of total enstrophy Q: 

Q = <(curl v)2> + <(curl b)2> (26) 

is accompanied by an energy dissipation in the limit of zero viscosity 
and magnetic diffusivity. The numerical simulation, however, seems to 
contradict this latter result. If this is corroborated by further numer­
ical simulations, it certainly presents a significant challenge to the 
closure community, insofar as it is the first time that such a qualitative 
unexplained discrepancy between numerics and closures has been en­
countered. The (faster than exponential) growth of total enstrophy Q 
is associated to a flow with finer and finer small-scale structures in 
which dissipation occurs. This is linked to problems of intermittency 
and geometry of small-scale turbulence on which 2D MHD could pos­
sibly shed light (see concluding section). 
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Conclusions and Perspectives 
Many works have been devoted, in recent years, to the understanding 
of the onset of turbulence from a mathematical point of view75-77 as 
well as from experiments78 and numerics. Particular attention was 
paid to the appearance of stochasticity in coupled nonlinear ordinary 
differential equations, for example in connection with strange 
attractors.79-83 Such systems contain only a few spatial modes but may 
display randomness in time. Fully developed turbulence, on the other 
hand, has spatial as well as temporal randomness. 

Two-point closure techniques have proved very useful in the study 
of strong nonlinear problems: hydrodynamical and MHD turbulence, 
Vlasov turbulence,84-85 influence of a strong external magnetic field on 
homogeneous MHD turbulence,86 relaxation of anisotropy,87 chemical 
turbulence,88 spin hydrodynamics,89 barotropic Rossby waves,90 and 
strong turbulence in magnetized plasmas.91 The extension of two-
point closures to inhomogeneous turbulence may prove to be untract-
able (see, however, the one-point clipping approximation in Ref. 92). 

In hydrodynamics, two-point closures can be viewed as a quan­
titative formulation of the phenomenological ideas of Kolmogorov4 

leading to a -5/3 inertial range for the energy spectrum. However, 
experiments for higher-order correlation functions indicate that the 
Kolmogorov predictions are incorrect.93 Several modifications to the 
Kolmogorov law have been proposed.949535 The question of the 
correction to the 5/3 law remains open. It has been linked to the inter­
mittent structure of small-scale turbulence,9697 with smaller eddies 
filling less physical space as the cascade proceeds. This problem of 
intermittency with very fine, strongly concentrated structures separ­
ated by wide portions of quiescent flow (spottiness) is not described by 
the two-point closures and appears as a stumbling block of turbulence 
theory. More measurements and visualization of the geometry of 
small-scale turbulence are needed. 

Another approach consists in looking at field lines in a numerical 
experiment. In 3D simulations, the Reynolds number is not large 
enough to see appreciable effects of intermittency.98-99 In two dimen­
sions, however, higher Reynolds numbers can be attained; in that 
respect, 2D MHD might be considered as a prime experimental 
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(numerical) field for problems of intermittency. The problem of small-
scale structure of turbulence is linked to the possible loss of regularity 
of the inviscid 3D Navier-Stokes equation (and probably also of the 
MHD equations) at a finite time. Such an approach to a singular 
behavior, as the viscosity and magnetic diffusivity tend to zero, could 
be studied numerically in 2D MHD, in particular by looking at the 
stretching and twisting of vortex and current lines by velocity 
gradients. 

A promising tool in the study of the large-scale properties of turbu­
lence seems to be the renormalization group technique (RG) developed 
in critical phenomena.100101 Forster, Nelson, and Stephen12 were the 
first to introduce the RG to study the infrared (k ~* 0) properties of 
randomly forced, homogeneous, isotropic, and incompressible 
Navier-Stokes turbulence.102 In the renormalization group technique, 
a small expansion parameter linked to the dimension of space is dis­
played. Fournier103 showed that it was possible, in turbulence, to 
calculate in a fixed dimension by expanding in a parameter linked to 
the spectral exponent of the force autocorrelation. The critical 
dimension (above which the Navier-Stokes equation reduces to a 
Langevin equation) is replaced by a critical spectral index. 

With this modification, one can perform renormalization group 
calculations of helical turbulence in three dimensions.3 For Navier-
Stokes turbulence helicity is, at best, marginally relevant (it does not 
modify the fixed point of nonhelical turbulence). In helical MHD, 
however, the new linear term (generated by the RG procedure) which 
appears in the induction equation is proportional to curl b and domin­
ates Joule dissipation as k -*• 0; this destabilizing term corresponds to 
the dynamo effect. In nonhelical MHD, preliminary calculations104 

indicate that for a weak magnetic forcing, the renormalized magnetic 
Prandtl number tends to a universal value in the large scales. As the 
magnetic forcing is increased and reaches a critical level, a new fixed 
point appears by which the magnetic Prandtl number tends to infinity 
and the inertial term becomes negligible. It seems that in that case 
large-scale motions result from a balance between the Lorentz force 
and viscous dissipation, leading to a cubic equation for the evolution 
of the magnetic field. Renormalization group techniques seem promis­
ing in the study of large-scale phenomena (turbulence with rotation, 
turbulence in the presence of a strong uniform magnetic field). It is 
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not clear how they can be extended to the ultraviolet end of the 
spectrum to study intermittency. 
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Abstract The large and extensively reported discrepancies between 
theoretically expected and experimentally observed theta-pinch 
properties are briefly reviewed. The denial in basic MHD theory of the 
observed strong plasma mass rotation can be traced back to a too 
simplified and restrictive plasma single-fluid formulation. Adopting a 
two-fluid description, a basic equation for ion motion is rewritten so as 
to express, in a moving frame, conservation of ionic canonical angular 
momentum. The electronic charge transport in fluid and particle formu­
lations is discussed and expressed quite generally as a magnetization 
current. The combined ion and electron charge equations yield upon 
integration a linear differential equation for which the presented solu­
tions relate the magnetic flux within the plasma to the plasma column 
expansion or compression. Special attention is given to solutions that 
describe much discussed observations like the separation of the implod­
ing plasma density gradient ahead of or behind the magnetic field gra­
dient, or an azimuthal ion velocity reversal. The "magnetic piston" 
concept is criticized. Power and energy considerations from classical 
electromagnetic theory of magnetized media and linear current systems 
explain the remarkable influence of initial bias field upon the implosion 
dynamics. 

INTRODUCTION 
The magnetic compression arrangement known as the fast theta pinch 
still remains the only controlled magnetic fusion device that readily 
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produces truly thermonuclear plasma conditions. From the well-
established classical MHD theory, both in macroscopic and guiding 
center formulations (proved to yield identical results1) its operation 
principle is simple. Roughly, an increasing axial magnetic field radially 
compresses and thereby also heats a highly conducting plasma 
column. However, decades (both in years and number of experiments) 
have repeatedly proved that the theta-pinch plasma cares very little 
about classical MHD theory. The predicted concentrated surface 
currents never show up; the ions are the first to become hot instead of 
the electrons2; although MHD theory denies any torque,1 the plasma 
column immediately starts to rotate, and up to such a tremendous 
speed that even the emission of megaelectron volt fusion neutrons is 
rotationally shifted3; some bias field cannot be expected to change the 
compression very much but actually will, depending on its direction, 
change the implosion dynamics drastically24'5; the latter is often 
treated theoretically as the action of a magnetic piston or 
snow-plow2-4'5; at higher initial densities, however, this "plow" has 
been observed to be capable also of dragging!6'7 

In contrast to the fairly well-understood tokamak plasmas for 
which, however, experimental parameters of today remain about the 
same as in 1968, there is a steady flow of intriguing results from theta-
pinch experiments. For example, Ref. 8 reports strong plasma heating 
near the compression coil ends; Ref. 9 observes plasma outflow there 
in conflict with theories; Ref. 10 investigates a remarkable ion-separ­
ation mechanism in the plasma column; Ref. 11 reports extreme 
heating with kiloelectron volt x radiation from field reversal regions; 
and Ref. 12 stresses the decisive influence of the initial plasma density 
upon the imploding plasma structure. 

Recent theoretical efforts are dominated by one of the many radical 
departures from classically expected behavior, namely, the rapid ex­
ternal field penetration or "diffusion" into the plasma. (See the bril­
liant discussion in Ref. 13 about the use of the diffusion concept in 
plasma contexts.) Among such papers on "anomalous resistivity," 
Ref. 14 is usually referred to. It makes use of very extensive numerical 
calculations that include turbulence, three linear kinds of instability, 
and nonlinear instability saturation mechanisms. In conclusion, the 
authors present a formidable list of neglected effects and still more 
instability types to be included in future codes, which may yield satis­
factory agreement with experiments. 
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MAGNETICALLY INDUCED PLASMA ROTATION 
In 1968 we showed15 that the two standard MHD equations for mass 
and charge transport, with, of course, the full convective acceleration 
term retained for the former and tensor conductivity for the latter, 
imply that a plasma picks up mechanical angular momentum from the 
rotational electric field associated with time and, for a moving 
plasma, space variations of a magnetic field. This result, i.e., the exist­
ence of a form of the Einstein-de Haas effect for plasmas also, is in 
glaring conflict with the generally accepted fluid formulation dis­
proof16 of electromagnetic origin for the intense rotation observed in 
theta-pinch plasmas. An impressive number of explanations compati­
ble with (or rather suggested by) the disproof were proposed but re­
jected by the results from accepted theory1 and careful experiments7 

that quickly turned up. As a result the question of rotation origin has 
become so controversial and disliked by plasma journals that it is 
avoided even in works directly addressed to the structure and conse­
quences1718 of the rotation. 

To resolve the aforementioned conflict it must be observed that a 
plasma is not a continuum, but a particle system, for which the inter­
action between particles is not of purely central force character. Any 
absence, resulting from quasineutrality, of net electric torque on any 
plasma unit volume does not imply conservation of mechanical 
angular momentum. The proper continuum formulation and tech­
nique19 for handling such particle systems was proved,20 with electron 
inertia retained, to reproduce our result from the simple MHD equa­
tions. The analysis and the results presented in the sequel are actually 
little more than the application of the outcome of Ref. 20. 

THE ION MOTION EQUATIONS 
The nonviscous motion for singly ionized ions is described by the 
equation 

m.n.(d\. Idt) = en.(E + V. x B) - g r ad^ - en.Q/o), (1) 

where m., n., e., V. and p are the ion mass, density, charge, velocity, 
and pressure, respectively. The expanded form of the convective time 
derivative in Eq. (1) 
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d\/dt = (3 V / 3 t) + Vi grad K2 - V. x curl V. (2) 

will be used later. The last term of Eq. (1) is the friction force by elec­
trons on the ion motion. The magnetic field strength B obeys the 
Maxwell equations 

div B = 0, (3) 

curlE = - dB/dt, (4) 

curl B = jKo(j + curl M), (5) 

where ^ is the permeability of free space. In Eq. (5) we distinguish be­
tween the charge transport by free particles, denoted by j , and that by 
the magnetically bound or "static" particle motion, curl M, where the 
magnetization M is given by the density of the magnetic moments \it of 
gyrating electrons: 

M = - p ,B/B2, p , = Vm m Kci =nuB. (6) 
^ el ^ el e e L-L e'e 

It is important to note the partition of free and bound electron 
motion, curl H and curl M, respectively, where H is the magnetizing 
field. Such a partition, which is fundamental in the classical theory of 
magnetized media, is often claimed to be generally unsuitable for 
plasmas because of the nonlinear relation between H and M. We 
disagree. A similar partition for the ionic motion, however, is indeed 
meaningless and not made here, because the evaluation of the free and 
definitely nonnegligible ion inertia drift current will only bring back a 
single-particle version of Eq. (1). 

The identity 

d r f da 

dt J v ^ ^ J v ~dT ^ S 

+ J div a • V • dS - <D V x a • ds (7) 

together with the equations (2), (3), and (4) makes it possible to ex­
press the ion motion equation (1) in the following integral form: 
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d r d r 
m, di 5>v

 V -d*=~e tf J y B-dS 
i i 

~ J V ~", igradp) ' * " e§^ 7 J ' *• (8) 

These integrals refer to a closed loop, length element ds, which defines 
the boundary of a surface, surface element dS. All parts of the loop 
follow the local ionic velocity V, i.e., the loop is "frozen" into the ion 
gas. Note that there is no loss of generality in rewriting Eq. (1) as Eq. 
(8). With the vector field a in Eq. (7) as 

a = B + (m/e) curl V. (9) 

and standard vector relations, the derivation of Eq. (8) is not too 
difficult. 

In the following we shall consider the variations in time and space 
of a magnetic field of uniform direction, B = Bz., and azimuthal 
symmetry, B = B(r). With an ion density distribution with the same 
rotational symmetry as the magnetic field, Eq. (8) can be simplified as 

mi m <V> = - e it j0
B«) *« - n r - r = r(t)- (10) 

THE ELECTRON MOTION EQUATIONS 
For the assumed cylindrical geometry the Maxwell equation (5) 
becomes 

I dB Q ,p- v 

where a free-particle current j is the sum of the total ion motion and 
azimuthal drift part of the electronic motion. In the first-order orbit 
theory, only the electric-field drift and the magnetic-field gradient 
drift enter for these electron drift motions: 

;„-«»,<§) + ( T J H ( 4 T - ) 02) 
and 
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j =enV +j . (13) 

Equations (11), (12), and (13) give the total current 

/ l x / 3 f i x , .E. N 1 , dp . ^ 

-(^)(^r) = ^,^ + ^ ( ^ ) + -wis?)- 04) 
Note that the field gradient part - (pjB1) (dB/dr) of the static 
magnetization current in Eq. (11) is identically cancelled by the free 
magnetic gradient drift current in Eq. (12). This paradoxical cancel­
lation was graphically proved by Tonks21 to be caused by the change in 
Larmor orbit radius with the magnetic field. It does not enter in the 
usual description of electrons as a massless fluid, i.e., 

E + V x B + {Men) gradpp = 0, (15) 

which directly yields the electronic part of Eq. (14). A remarkably 
similar cancellation will occur among the two remaining electron 
terms in Eq. (14). Consider the bracket below in the expansion of 
these terms: 

In the absence of symmetry-breaking instabilities and any externally 
applied radial electric field, the field Er can arise solely from the 
charge separation caused by differences in the radial drifts of electrons 
and ions so that the energy available to sustain Er is restricted to be of 
the order of the electron thermal energy. To avoid an external Er is in 
practice very difficult since that would require a large number of azi-
muthally equally distributed feeding gaps to the plasma compression 
coil.22 Whatever the origin of E,., the electron energy gained for a 
radial displacement, - eE,6r, must equal the corresponding change in 
kinetic energy: 

- eE,.6r = (3/3r) {-jmeVe?)6r (17) 

and the bracket terms in (16) cancel. A further simplification, not to 
be made here, would be to neglect electron pressure effects altogether 
and thus the last term, diamagnetic current, in (16). Actually, there is 
such a model, called the Vlasov-Fluid Model,23 in which the ions obey 
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the collisionless form of Eq. (1) but the electrons are postulated to be 
just a massless and charge-neutralizing fluid for which 

E + V x B = 0. (18) 

This Vlasov-Fluid Model has been proved23 remarkably successful, 
better than ideal magnetohydrodynamics, in describing stability 
properties of high-/? plasmas. 

THE MAGNETIC FLUX EQUATION 
The azimuthal mass velocity Viip is eliminated between Eqs. (10) and 
(14). As the bracket terms in (16) cancel as discussed, the result is 

d v 1 dB , t dne . fr -i Lr 

di UV ~dF + W±r ( T F ) - J0
 B «>* #1 = 1 > < 1 9 > 

where A = A(r) is the collisionless ion skin depth depending on the ion 
density «;(/•) and the ion mass m,: 

A"2 = ^njm,. (2°) 

For a deuterium ion density range 1013 - 1015 cm"3 or singly ionized 
argon between 2xl014 and 2xl016 cm"3, for example, A will range be­
tween 10 and 1 cm. The right-hand side of Eq. (19) is the resistive 
voltage drop per radian of arc of the considered loop. We make the 
usual assumption for magnetically confined high-temperature plasmas 
that such resistive electric fields are negligible compared to the induc­
tive fields. Equation (19) can than be integrated directly: 

AV -QJ- + MoMe A
2 -QJ- - O = C0, (21) 

where 

*(r) = Jo B {kn dk (22) 

and, as seen from Eq. (10), the integration constant C0 is a constant of 
motion and is proportional to the canonical, i.e., matter-plus-field, 
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angular momentum of the loop at any reference instant of time t0 

when also r = /•„, «,(r0) = «0) and A = V For compactness, the usual 
factor 2n in expressions for flux, Eq. (22), and angular momentum has 
been dropped. 

Equation (21) can be written as a linear differential equation 
relating 0 and r. 

32<D 1 , 3<D x , v f dne v 
-J7~ T^ST^-^^-^^-^ri-Q^) (23) 

provided that A(«,) and the right-hand-side term can be expressed as 
known functions of r. However, n,{r) is known only to the extent of 
total ion number conservation within r when there is balance between 
ionization and recombination: 

r 
/!,(!)! df = const in time, (24) 

so that it will be assumed 

nf=n{)rQ\ l < a < « > . (25) 

The case a = 1 would mean a line distribution of ions, and a = 2 is the 
important special case of retained relative ion density distribution 
everywhere upon plasma column compression or expansion, i.e., 
something like a "breathing" mode. The case a > 2 means a "piling 
up" of ions in the vicinity of r upon compression, and a = °° means 
perfect attachment of the ions to a cylindrical piston surface at r. The 
last term of Eq. (23) is readily made a known function of r by means 
of the quasineutrality condition ne = n, followed by Eq. (25) and 
finally the constancy of motion for electronic magnetic moments. The 
resulting differential equation becomes 

d2(t> 1 , 9 * x / / " o x - / mjOtue . 

~J7 ~ 7 ( ^ 7 ) ~ V 2 ( T ) (* - c« + - Jr ) - o. (26) 

For a + 2\\. has the solution 
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*(r) = C0- m.a^/f? + rAJ,(s) + rA2Kv(s), 

v = 2/(«-2), s = s(z-) = (wA) (/•//•0)
l/v, (27) 

where /„ and Kv are the v-th-order modified, also called hyperbolic, 
Bessel functions of the first (7) and second (K) kind. To determine the 
space integration constants Ax and A2 with the use of the time inte­
gration constant C0, the latter has to be split up into its flux part <t>0 

and its mechanical angular momentum part L0, 

C0 = %+L0, d> 0 =] fl($,/„)|rf|, 

L0=(mj/e)Viv0r0, (28) 

and, further, B(r) has to be calculatefd from Eq. (27). With the use of 
modified Bessel function recurrence formulas it is found that 

1 ( 9 * \ 

= X ( T0 )'""' Wv-xW - A2K-t(s)l ( 2 9 ) 

Ax and A2 can now be determined from Eqs. (27) and (29) as 

Ax= vtBoToAT̂ o) - V'(A>- niianJe^K^iso)], 
(30) 

A2= -v[B0r0Iv(s0) + Ao"1 (Z-o- ww/^ViCso)]-

From Eqs. (11), (29), and recurrence relations the total current density 
is obtained as 

1 , dB v 1 . r \yv-2 
~ * (TFT) = —[7 (7^ ) [ i4,/ ,(s)+^A(f)] . (3D 

With the solution Eq. (26) and canonical angular momentum conser­
vation at any r, i.e., 

0(r) + (m,/e)^(r)/-=Co , (32) 

we, as expected, reproduce from Eq. (31) the discussed partition into 
free and bound current densities: 
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1 ( dB \ ! / r w-i/ m, am, \ 

= e«,K;v + ^ - J J T • (33) 

For a = 2, i.e., uniform compression or expansion, the solution of 
Eq. (26) is a simpler algebraic expression: 

* (/-) = Or 2milxjei+ r(A, f+ A 2r
q), (34) 

where 

<72= 1 + /-oVAo2, 

At= (\/2q)[B0r0«
+]-(L0-2miliJe1)(q - l ) ^ 1 " ] , 

A2= - (l/2^)[JB0r0"+,+(L0-2^,Me/e
2)(g + l)/-0"-']. (35) 

The effect of the "static" electronic motion owing to the electron 
density gradient appears as a correction (-rrijayije2) to the mechanical 
angular momentum. Under typical theta-pinch conditions, e.g., an 
electron temperature of 100 eV, B = 1 Wb/m2, r = 10 cm and deu­
terium ions, this term is about three powers of ten smaller than the 
flux part, ~Brl/2, of the canonical angular momentum. However, it 
may be large in a region of vanishing field strength where, of course, 
our first-order orbit description of the electronic motion is no longer 
valid. In a Vlasov-Fluid Model of the plasma23 this electronic cor­
rection vanishes, but in the opposite limit, where the plasma is taken 
as a single-species quasineutral fluid,16 it is implicitly taken to cancel 
its ionic counterpart. 

LIMITING CASES 
It is to be emphasized that the fields and fluxes obtained so far express 
no more than conseivation of canonical angular momentum for that 
certain circular loop in the moving ion gas frame that is characterized 
by the set of initial conditions r0, B0, <t>0, etc. Singularities of Iv and Kv 

at s -*• °° and 5 = 0, respectively, simply mean that infinite expansion 
or compression of this loop would require infinite field strengths and 
fluxes. 
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As assumed, the plasma channel tends with increasing a, i.e., 
v -*• °° in Eqs. (27), (29), and (30), toward the physically nonexistent 
"sharp boundary" model popular in stability theories. Specifically, 
for that large value, 

« = eVicp0r0/ixe, (36) 

a particular solution directly found from the differential equation (26) 
is <t» = <t>0 - It may be pointed out that this would not be a case of the 
Lighthill theorem24 of flux conservation in the electron gas frame; 
actually, it is the "static" diamagnetic current taken as negligible in 
his derivation that would preserve the initial flux 0„ within r. 

The classical MHD theorem of flux conservation in the mass frame, 
i.e., "frozen" field lines, is found already in Eq. (19) for a -* °° and 
A = 0. Note the ambiguity of the latter limit; it is obtained both for 
m,-*-0 and for n = n:-*°°. This is consistent with the usual explana­
tion of the theorem as a consequence of 

E + V x B = j / o , o -* oo, (37) 

where V has to be both the mass velocity and some net charge velocity. 
The striking feature of Eq. (34) is its very strong dependence on the 

initial ion density contained in the parameter /-0/Ao(«0). There is a 
similar strong, but less obvious, dependence in the Bessel function ex­
pressions. The striking feature in experimental work on theta-pinch 
dynamics (see, e.g., Ref. 12) is indeed also the very strong influence of 
the initial ion density. 

In the limit Aĝ - r0 it is found with the aid of the following limiting 
forms, involving the T-function l~(v + 1) = vl~(v), for small 
arguments: 

[(l/2)s]v 

/,(*) « p ( v + i) , v # - l , - 2 , . . . (38) 

K.v(s) = Kv{s) ~ VtT(v)(V2sf\ v±0, (39) 

that 

*(r) = T [B0- - ^ 0 2 ( v - l ) J * T- • (40) 

In the a = 2 case, Eqs.(34) and (35) yield consistently with Eq. (40): 
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<t>(r) = T [B0- -^Y (L- 2m^e/e
2)\ ~ - j - . (41) 

The singularity v = 1 in Eq. (40) is probably nonphysical since it can 
be traced back to the nonvalidity point stated in Eq. (38). Physically, 
the results Eqs. (40) and (41) are almost trivial. When Ao P ra the ions 
are so few and heavy that the inductive effects associated with their 
motion from rQ to r are insufficient to change the initial field B0. 

In the opposite limit, A0 > r0, i.e., s and s0 > 1 when v is finite, the 
limiting forms of /„ and Kv for large arguments, 

7„(s) ~ exp s/{2nsy'\ Ky(s) « ^ y l , (42) 

give for the flux of Eq. (27) 

*(/•) = Co- -f-

+ ( — yn"~ ' [B0r0X0 sinh(5 - s0) 

- ( g 2 ' ^ )cosh(5-50)J. (43) 

A linearization with respect to 5 ~ s„ proves that a radial shift 6r is 
accompanied by a flux change d<t> similar to that obtained in Eqs. (40) 
or (41): 

d<D = B0r06r, 6<X> = Q(r0 + 6r) - <t> (/•„). (44) 

This result, however, is almost meaningless since it is a consequence of 
the double and too extreme inequality 6r < A0 < r0 . Equation (43) can 
have physical relevance only when the steep and large hyperbolic func­
tions essentially balance each other, as occurs already for 6r ~ A0: 

\B0r0k0\ ~\L0- mia\ije2\. (45) 

The factor A0 < r0 in Eq. (45) means that the mechanical part of the 
total canonical angular momentum is small when n, is large because of 
large flux-creating ionic current then carried at a small or moderate 
ionic velocity. Equation (45) also shows that the initial values B0, L0, 
etc., are not in general independent as they have to comply with some 
reasonable physical process creating such an initial set. 
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'MAGNETIC PISTONS" 
AND OTHER PHENOMENA 
It is a well-known but intriguing feature of theta pinches that the 
moving region of steep magnetic field strength variation, commonly 
interpreted and referred to as a "magnetic piston," may precede or 
lag behind the moving region of steepest increase or maximum of 
plasma density.6'7-12 The sign of this discrepancy depends on the initial 
plasma density, and the change occurs for an initial deuterium fill 
density in the region 1014-1015 cm"3. Consider Eq. (34). For inward 
plasma motion the associated field strength varies essentially as (r0/r)q; 
however, the plasma density has been assumed to vary as r~" = r2. A 
probe operator would record a "magnetic piston" preceding the 
imploding plasma front for 

q - (1 + r0
2/k0

2y> > 2, i.e., r2 > 3A0
2. (46) 

For /•„ = 6 cm, for example, deuterium ions and absence of impur­
ities as well as ion coupling to neutral atoms, the inequality (46) leads 
to % > 1013 cm"3 in reasonable agreement also quantitatively with 
observations.12 In the Bessel function expression (29) the function 
Kv-t(s) accounts for the corresponding "magnetic piston" when 
a > 2. Roughly, it becomes significant when s„ > 1: 

s0 = vr0/X0 > 1, i.e., r0/Xe> a/2-1, (47) 

which is essentially the same result as Eq. (46). For a < 2, so that v 
< 0, the roles of I„-i(s) and K„-i(s) are reversed, but, again, the 
parameter X0 has to be of the order r0 or less: 

- „ r 0 /x 0 >l , i.e., r0/X0 > 1 - a/2. (48) 

"Magnetic pistons" of various elaborate types (sharp, diffuse, 
leaking, reflecting, snowplowing, hybrids, etc.) appear more and 
more in the literature. Harold Grad13 has explained why the Bohm dif­
fusion concept actually is "a degradation of information." We think 
this view and most of his arguments for it also apply to the "magnetic 
piston" concept. 

One of the most extensive and careful experimental investigations 
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of theta-pinch implosion dynamics with special regard to the rotation 
origin has been given by James Benford in Ref. 7. As any electro­
magnetic origin was claimed to be impossible already in the intro­
duction, the outcome of his investigation is, as expected, a veritable 
massacre of all proposed mechanisms except for one theory25 based on 
computer calculations that seemed to agree qualitatively but failed 
quantitatively. More emphasis, however, was given in his paper to the 
observation of a strongly varying radial velocity distribution, which 
(we note) strongly conflicts with the often assumed and reported rigid-
body rotation.1718 During the implosion phase the ion velocity was 
found to change direction near the region of the plasma density 
maximum. Further, although resistive effects were far from negligible, 
contrary to that assumed here, an appreciable part of the current was 
found to be ionic. It seems that the parameter r0/\0 in Ref. 7 was prob­
ably a few times unity («, = 1016 cm"3 for nitrogen gives A„ = 1 cm) so 
that the observed separation of the field gradient from and ahead of 
the density gradient is as expected. The conditions for ion velocity 
reversal, easily found to be essentially A{A2 < 0, \A2\ < 1/4,1. for Eq. 
(34) in combination with Eq. (32), may have been satisfied, but the 
data presented do not allow the estimation of an initial set B0, L0, etc., 
with any reliability. 

The transfer of mechanical angular momentum into magnetic flux 
is a dynamo mechanism. It can also be considered as a Barnett effect 
for plasmas. It has been experimentally observed for a rotating 
plasmoid ejected out of a plasma gun,26 and specific features in the 
spontaneous generation of magnetic fields in laser-produced plasmas 
indicate that the phenomenon exists there.27 

STATIC AND MOVING-FRAME ENERGIES 
Consider a coaxial cylinder section of the plasma column. It is taken 
to have an arbitrary but nonmoving radius R and to be of unit length 
in the axial z direction. The total power influx through the cylindrical 
surface is obtained from the Poynting vector E x H as 

Pm = (-r2nR) • (cpE^R)) x (zHz(R)) = - 2nREvHz. (49) 

The azimuthal symmetry makes Ev purely inductive: 
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Ev = -dAjdt, (50) 

where A is the magnetic vector potential, 
I 

B = curl A, (51) 

and A is related to the flux <t> as 

A9{r) = <t>(r)/r, 0(r) = f fi«)| rf|, 4 , = A, = 0. (52) 

During a time interval f0-? the total energy Wm(R) fed through the 
plama cylinder surface r = R is 

Wm = -2nR\ H,(R)Ev(R)dt 
"^ 0 

J- ' r 1 , 3 0 v 1 /30X 

r [ 7 ^ ( - a ^ ) - M ] ( a 7 ) ^ - (53) 
0 

Now, a quantity Wme is defined and expanded as 

Wn.(R) = - f j 2Ttrj • ( 4 y - ) r f / rfr 

r' rR d r I t 30 v i / a* x 
= J Jo 2n 3>U7 (-jr)-^wKTrrX**. (54> 

A partial space integration yields 

^ w = *.«<*) - J, J0 M s? hrr)~ 

-M(f)\ •$}. \-$r)dtdr, (55) 

and this integral is readily recognized as that part of W-m(R) that has 
been stored within R as magnetic energy: 

("' (R r 1 , 3 0 . -I 3 r., 1 w 3 0 ,-, 
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= j J 0 2Ttr //, (r)( - g f ) dr dt. (56) 

The MHD approximations made, in particular neglect of displace­
ment currents and quasineutrality, make radiation and electric field 
energies negligible compared to fVms. Also, in the usual Amperian 
formulation of electrodynamics that we use, Wma includes the non-
negligible energy transfer to the magnetically bound particles (see Ref. 
19, p. 211). Thus Wmt means the total mechanical energy imparted to 
the ions in the volume r < R during t0 - t. A mechanical energy dens­
ity wme(R) can therefore be associated with Wmc(R) as 

( 1 x dWmt fl dA(R) 
w".-(23r)-ra---JJ<*>- ~rrdt- w 

~ 0 

In the moving ion gas frame, velocity Virf + V,vcp, however, 
—j • (dA/dt) replaces —j • (d A/3/), i.e., the mechanical energy trans­
fer from the V, x B field must be included. In the absence of charge 
accumulation, i.e.,/. = 0, this is seen by expanding dA/dt: 

Wmi(r, t) = - J j • (-gj-)dt 

C\ r dA i 
0 

J • (~dr)dt+ J j • (V,xB)#. (58) 

BIAS FIELDS 
The early implosion phase in magnetic compression is considered and, 
in particular, the inflow to the plasma of compression work plus radi­
ally directed kinetic energy. The derived mechanical energy density 
w'm is therefore reduced by the energy density stored in azimuthal 
rotation: 
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wv*(r) = - f 7(1) dA(k) - Vim,n,(r) Vlv\r) 

el r C c« - • / a \ t * \ rc0 - $)2
 n 

= - ̂  U «, -V" ( ai)( T ̂ ^ + l/2"<' V ]• <59) 
0 

A positive energy-transfer rate during compression to the moving 
plasma unit volume is given by the product of two negative quantities, 
K, and dw*Jdr, 

d w*e e2n,a 2 
V, -gj- = Vir -1—r (d) - Co)(0 - C0 - - C o ) . (60) 

It is assumed that plasma is initially at rest and permeated by the 
axial and uniform bias field B0, 

1 
C, = 4>(ro) = T B / o , 

* ( / • ) - Co >0 for/-</•„. (61) 

Equation (60) predicts a remarkable phenomenon: Compression in 
combination with a positive bias field would require that wme* 
decreasen Clearly, this is impossible because the plasma was taken to 
have no such energy initially. The only reasonable solution is V,r = 0, 
i.e., the positively biased plasma column simply does not compressn 
Equation (60) does not deny compression altogether—it will occur but 
not until the main driving field has impressed an additional flux of the 
same order as the bias flux or 2C0/a ~ <t>0. For zero or a negative bias 
field Eq. (60) states that compression and ion heating start imme­
diately as the main driving field is applied. 

We have previously shown in Ref. 28 how an important partition 
between plasma magnetic, kinetic, and thermal energies could be 
accomplished by considering the plasma as an assembly of a large 
number of magnetically and mechanically interacting but separate 
current loops. Note that the old and elaborate electrodynamics of such 
quasistationary linear current systems29 allows the loops to move in an 
arbitrary (but nonferromagnetic) dielectric. A both central and 
remarkable result from this theory is that the evolved magnetic energy 
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acts as a negative potential energy for mechanical energy. Omitting the 
proof, we just state from such a loop reasoning our physical interpre­
tation of the above obtained, and experimentally well-known, result 
of bias-field influence. To establish a positive bias field is a waste of 
potential energy that could have been used for heating and 
compression. The negative bias field acts instead as a potential energy 
reservoir. 

BIAS MECHANICAL ANGULAR MOMENTUM 
According to Eq. (60) the described results about bias-field influence 
apply to any initial canonical angular momentum regardless of its 
composition into flux and field parts. We may then assume that a 
cylindrical discharge vessel is rotating like an isotope separation 
centrifuge of 0.1 m radius and a peripheral velocity of 500 m/s. A 
deuterium atom that follows the wall rotation and becomes ionized 
carries a mechanical angular momentum that, translated according to 
Eq. (28) into a uniform magnetic flux across the centrifuge cross 
section, corresponds to a field strength of 2 x 10"4 Wb/m2 = 2 G. This 
negligible field strength, however, cannot be used to refute fusion-
technology use of bias angular momentum. Strictly, the result applies 
only to the case A() > rQ discussed above under the heading "Limiting 
Cases." For A() < r0 only an annular strip of the width A„ is available 
for magnetic flux generation [cf. Eq. (45)]. Then, the same initial 
rotation would correspond to the small but nonnegligible bias-field 
strength of 100 G if there were an initial ion density of 1017 cirf' near 
the wall, i.e., A0 = 1 mm. 

A physical explanation of the effect of a negative bias angular 
momentum is almost trivial: The moving-frame electric field of the 
external driving magnetic field is then directed both so as to increase 
the initial velocity of the ions and so as to deflect them radially 
inwards. 

Tentatively, we indicate a few reasons for substituting the bias mag­
netic field by bias angular momentum or a combination of both: 

1. More pronounced thermonuclear conditions may be expected 
from an imploding plasma that retains an initial shell structure. 
Such a plasma of finite length and sufficient density can be made 
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to create a field reversal ahead of the imploding plasma front. The 
resulting configuration would then be an " I o n Ring 
Compressor"30 but charge-neutralized and without a separate ion 
injection arrangement. (The "Ion Ring Compressor" is topo-
logically the old Astron concept but with an ion ring replacing the 
electron beam layer.) 

2. At least in principle, bias angular momentum is more flexible than 
the topologically rather constrained irrotational bias field. (B„ 
always varies in both strength and direction.) 

3. The strongly stabilizing action of externally impressed rotation 
upon straight discharges may exist also for theta pinches. 

SUMMARY AND CONCLUSIONS 
The standard equation (1) for ion mass motion was rewritten, without 
approximations, so as to express by Eq. (8) the experimentally ob­
served mass rotation for the ion gas as the externally applied field per­
meates the theta-pinch plasma. It has been pointed out previously20 

that this rotation origin, in contrast to the other proposed mechan­
isms, accounts for the strong and early rotation onset. For consistency 
the electronic motion was described both in fluid formulation and by 
first-order orbit expressions valid for the assumed conditions of 
strong fields and negligible collisions. Hence, phenomena associated 
with zero field regions11 in the plasma, or conditions at the end 
regions8 where the assumed simplified azimuthal symmetry is not 
satisfied, are not included in our analytical model of the plasma. The 
two-particle species equations were combined into Eq. (19), which re­
lates plasma magnetic flux and plasma radial motion. The solutions of 
this equation were discussed and found to depend strongly upon a 
length ratio A(,/r0, which can also be expressed as the ratio of ambient 
Alfven wave velocity and ionic Larmor gyration speed. 

The aim and the essence of the analysis have been to show that basic 
plasma equations combined with well-known results and techniques 
from classical electrodynamics of moving media19 do predict at least 
qualitatively a number of experimentally observed phenomena like 
plasma rotation, rapid field diffusion, separation field plasma, rota­
tion reversal, and peculiar bias-field influence. For a quantitative 
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description, analytical techniques like the present one do not seem 
feasible. In particular, important microprocesses like ionization, re­
combination, and excitation of experimentally observed instabilities 
can probably be handled only by extensive numerical techniques. 

NOTE ADDED IN PROOF 
It has been argued that the "well-established" or "universally 
accepted" fast-theta-pinch description refutes our very different 
description. The essence of this "experimentally proved" description 
seems to be the following: When subject to an externally impressed 
and very rapidly varying magnetic field the heavy ions at first remain 
stationary. They are then dragged radially inwards by a strong electro­
static field Et that is created by radially, Ver ~ EjB, and azimuthally, 
Vev ~ EjB, drifting electrons. We note about such a description: 

i. An azimuthally directed ion velocity will always be imparted to 
the ions however short the rise time is of the impressed field. See 
Ref. A-l for a calculation of the remarkable single-ion trajec­
tories when the field rise time is much smaller than the ion gyra­
tion time. 

ii. As drifting electrons by the very definition of drift velocity 
acquire very limited energy, they are clearly unable energetically 
to "drag" heavy ions up to the observed fusion kiloelectron volt 
conditions. 

iii. Detailed and careful electrical probe measurements of Er do not 
substantiate the "well-established" theory. See, e.g., Ref. A-2. 
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