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Abstract Controlled thermonuclear fusion offers probably ihe 
only relatively clean energy solution with completely inexhaustible 
fuel and unlimited power capacity. The scientific and technological 
problem consists in magnetically confining a hot, dense plasma 
(pressure several to hundreds of atmospheres, temperature 108 

degrees or more) for an appreciable fraction of a second. The scienti­
fic and mathematical problem is to describe the behavior, such as 
confinement, stability, How, compression, heating, energy transfer, 
and diffusion of this medium in the presence of electromagnetic 
fields just as we now can describe the behavior of air or steam. Some 
of the extant theory consists of applications, routine or ingenious, of 
known mathematical structures in the theory of differential equa-
lions and in traditional analysis. Other applications of known math­
ematical structures offer surprises and new insights: the coordination 
between sub-supersonic and elliptic-hyperbolic is fractured; super­
sonic propagation goes upstream; etc. Other completely nonstan­
dard mathematical structures with significant theory are being rap­
idly uncovered (and somewhat less rapidly understood) such as non-
elliptic variational equations and new types of weak solutions. It is 
these new mathematical structures that one should expect to supply 
the foundation for the next generation's pure mathematics, if history 
is a guide. Despite the substantial effort over a period of some 20 
years, there are still basic and important scientific and mathematical 
discoveries to be made, lying just beneath the surface. 

INTRODUCTION 
This paper could be considered a short course on the mathematical problems 
arising in fusion energy. In July 1974 the Courant Institute held a very abbre­
viated summer course of some 30 lectures on the same topic. One is re­
minded of the definition given in freshman physics of a gas, that is, that it 
expands to fill any size container. The converse, compression, may also lead 
to a liquid or solid and (to compound the metaphor) may lead to indigestion. 
Nevertheless, it is possible in a single lecture to give the flavor of the subject 
and an idea of its present scientific and technological status, plus a descrip-

* This paper is adapted from the text of a talk presented at the "Short Course" on energy at the 
Annual Meeting of the American Mathematical Society in San Antonio, Texas during January 
1976 It is reprinted here with the permission of the American Mathematical Society. This work 
was supported by the U S. Research and Development Administration under Contract E Y-76-C-
02-3077*000. AMS(MOS) subject classification (1970). 76W0S, 49D99, 35R20, 00-02. 
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4 HAROLDGRAD 

tion of its (past and future) interaction with mathematics. 
The outline of this short review is as follows: 

Controlled Thermonuclear Research (CTR) 
and Magnetic Fusion Energy (MFE) 

1. the field (CTR) and the working substance (plasma) 
2. ultimate potential as an energy source 
3. present status as a field of science and as a branch of technology 
4. present status with regard to the power-producing goal 
5. the role of mathematics (and mathematicians) in CTR 
6. the role of CTR in mathematics 
7. a few "typical" applications involving interesting new 

mathematical structures 

Very briefly, with regard to items 3 and 4, we are beginning to approach a 
state of maturity in attitude, if not quite yet in content. With regard to item 
5, our thesis will be that mathematicians can play a surprisingly large role, 
considering that the physical field is still "wild and woolly," so much so that 
the laws of physics are still being discovered; and with regard to item 6, we 
venture a prediction that mathematical structures arising in plasma physics 
will enter the mainstream of the next century's mathematical analysis, just as 
fluid dynamics and electromagnetics did in the last century. 

STATEMENT OF THE PROBLEM 
Fusion involves the collision of certain light nuclei (e.g., isotopes of hydro­
gen, typically deuterium or deuterium plus tritium) that may fuse to produce 
other nuclei (such as neutrons and helium) and energy. In contrast, fission 
involves the splitting of certain heavy nuclei (typically uranium or pluton-
ium), also with a release of energy.1 There are many exothermic fusion reac­
tions. About these we note only that the one that seems to involve the most 
accessible operating conditions uses a 50/50 mixture of deuterium and tri­
tium. Pure deuterium as the fuel (a later development) would avoid the 
necessity of manufacturing and handling radioactive tritium (which is not 
found naturally but is obtained by using the neutrons generated in the reac­
tion). Further down the road are technologically more difficult "esoteric" 
reactions that involve no neutrons at all and would eliminate all problems of 
radioactivity and neutron-activated structural damage. 

Nature abounds in operating fusion power plants—for example, the Sun 
and most stars. It would not suffice to merely reproduce a portion of the Sun 
in the laboratory. The reaction must be accelerated from a burning time 
scale of billions of years to one involving seconds, at most. At the opposite 
extreme, the time scale of an uncontrolled, very rapid reaction, as in an H-
bomb, is too short to be a useful source of energy unless it is slowed down. 
Elementary estimates turn out to require ignition temperature of several 
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times 108 degrees. The usual energy unit is the electron volt (1 eV ~ 104 °C) 
or kiloelectron volt (1 keV~10 7 °C) . We are interested in tempera­
tures of 10-100 keV. The situation is entirely different from that in acceler­
ators where the directed (not thermal) energy may be much higher; in a 
plasma we are concerned with a true kinetic temperature in which the veloci­
ty is more or less random and isotropic and is frequently close to Maxwellian. 
We say "kinetic" rather than "thermodynamic" temperature because the 
plasmas of interest will not be in equilibrium with regard to radiation. 
Radiation losses must be replaced by heat input or by the thermonuclear 
reaction itself; it is the latter that indicates an ignition temperature some­
where in the range given above. For an optimal temperature, ignition is con­
ventionally given by the Lawson criterion, n r > 1014, where n is the plasma 
density (ions per cubic centimeter) and T is the lifetime of an ion (in seconds). 
For reasons that will become apparent, any unmodified figure of merit of this 
type is more appropriate for use in Sunday supplements than as a scientific 
or technological measure of past progress or of the remaining distance from 
the goal, or as a comparison of the relative status of two experiments. 

The time required for a significant burn depends on the plasma state but, 
for practical reasons, must range from an appreciable fraction of a second to 
several seconds. At 10 keV, the speed of an electron is about 1 /7 of the speed 
of light and that of a deuterium ion, about 1 /400. In an appreciable fraction 
of a second even the ions will traverse (or circulate around) the apparatus 
many thousands to millions of times. Although an accelerator (even more so, 
a storage ring) confines particles for many more transits, this is done with 
very specialized techniques appropriate to particles in an extremely small 
part of phase space. The thermonuclear plasma, a true gas, requires con­
finement in a "bottle" that encompasses approximately all of phase space. 

Turning to the density of a thermonuclear plasma, it is easily estimated 
from the energy density, or pressure. This must be comparable to that of 
steam in a conventional power plant, and efficiency evidently favors as high 
an energy density as is practicable. The pressure will be from one to several 
hundred atmospheres; the upper limit is determined by the strength of (he 
structure. Given the temperature and pressure, we deduce that the plasma 
density is 10~2 to 10~6 of atmospheric—low, but by no means a good 
vacuum. Densities of actual plasmas of thermonuclear interest range from 
1013 to 1017 particles/cm3 (atmospheric density is 3 x 1019). 

To confine a hot, dense plasma and keep it from physical walls requires a 
field of force. Gravitation evidently works! But the minimum size would not 
be very much smaller than the Sun. The only other relevant force field is the 
magnetic field. A convenient conversion factor is that one atmosphere equals 
5000 gauss = 5 tesla (and p = B2). Fields over 105 gauss (6000 psi)are not 
likely to be used in any large permanent structure (megagauss fields are 
usually obtained only explosively). 

An evident complication is that magnetic fields (cf. the Maxwell stress 
tensor) exert highly anisotropic forces. This will be an important factor in the 
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design of magnetic "bottles," and it also suggests that plasmas in contact 
with a magnetic field may frequently be anisotropic. 

There is another confinement possibility, which has been given the 
unusual term "inertial" confinement.2 Instead of confining the plasma 
(force per volume = Vp) by a magnetic field (Lorentz force = J x B), it is 
confined by the "inertial force" g(du/dt). In other words, it is not confined 
at all and is allowed to expand freely. A very small, very-high-density ex­
plosion, ignited by concentrating a high-intensity laser beam or electron 
beam on a solid pellet, will be sufficiently attenuated by the time it expands 
to the size of the physical container that it does no significant damage (a 
conventional thermonuclear bomb could be so used in a large piston, say, a 
mile in bore). 

To be more precise, even with successful magnetic confinement, all the 
plasma and most of its energy eventually reaches a physical wall. The pur­
pose of magnetic confinement is not to prevent but to slow down and control 
the loss processes, to deposit the plasma and its energy where it will do most 
good and least harm. More specifically, it is to ensure that most particles 
that reach the walls (both charged and neutral atoms) are relatively cool. 
Part of the charged particle energy may be recovered directly as electrical 
energy (at high efficiency) by expanding the plasma against the confining 
magnetic field; another part, escaping at "open ends" (see discussion of 
magnetic mirrors below) may have some of its streaming energy also con­
verted directly into electricity; but most of the charged particle energy even­
tually reaches a physical wall where the energy is transferred to circulating 
coolant. Most neutrons deposit their energy in a neutron blanket surround­
ing the plasma, also transferring the energy to coolant. Some of what was ori­
ginally charged-particle energy reaches the walls in the form of high-energy 
neutrals (through an intermediate charge-exchange collision). Radiation is 
distributed rather widely in all the surrounding structure. Harmful effects 
(other than too-rapid loss of plasma energy) are primarily dislodgement of 
impurities by energetic particles bombarding the walls, and structural dam­
age of walls and coils by neutrons. Magnetic fields may serve almost as much 
to keep impurities out as to keep plasma in. In other words, the magnetic 
field is not so much a bottle as a porous plasma retardant. Nevertheless, 
many of the most useful theoretical models take the more ideal formulation. 

The standard, popular (but correct) remark is that the fuel is 
inexhaustible and essentially free. There is enough deuterium in a gallon of 
water (for example, seawater) to provide the energy equivalent of 300 gallons 
of gasoline, and the cost of extraction of the deuterium is already negligible. 
What this means, of course, is that the cost to the consumer will be deter­
mined by the capital cost of a power plant over its lifetime, distribution costs, 
and whatever ecological costs there may be in comparison with the com­
petitive cost, at some future time, of alternative energy sources. 

The description of the fuel as inexhaustible is sometimes contested 
because tritium, which is an artificial element, is generated by neutron 



FIGURE 1 
ADVANTAGES OF FUSION POWER 

1. Fuel supply plentiful, cost low 
2. No combustion products, very little radioactive waste 
3. Low radioactivity, reduced associated dangers 
4. No chance of runaway 
5. No diversion of weapons-grade materials 
6. High efficiencies, possibility of direct conversion 

bombardment in a lithium blanket surrounding the proposed D-T reactor, 
and it is estimated that there is only a hundred year visible supply of lithium 
(this, incidentally, is comparable to the resource lifetime claimed for fission 
reactors). However, since substantial use of lithium for this purpose would 
commence 25 to 50 years in the future, it seems safe to assume that 125 years 
of technological progress (cf. space flight, radar, solid state in 1850) will be 
adequate to develop tritiumless (D-D) and even neutronless power plants 
(using more esoteric nuclear reactions) in less than 100 years following the 
first operating D-T power plant. 

The comparison between fission and fusion power with regard to 
economics, safety, time scale, ecological factors, etc. has probablv already 
generated enough heat to fuel a medium-sized generator. This question 
would take us too far afield; let us just take as an exhibit. Figure 1. courtesy 
of Stephen O. Dean, Assistant Director for Confinement Systems, Division 
of Magnetic Fusion Energy. U.S. Energy Research and Development Ad­
ministration.3 

The basic conclusion is that a hypothetical fusion reactor does have 
inexhaustible free fuel, is almost certainly much cleaner and safer from the 
point of view of radioactivity and other ecological ha/ards and suffers from 
only one clearcut disadvantage compared to coal. oil. or fission—it does not 
yet exist. 

PRESENT STATUS AND FUTURE PROJECTIONS 
As an introduction to the assessment of fusion as a field of science or 
technology it is necessary to evaluate the magnitude of the problem, in 
particular its complexity. A proper appreciation of this point dominates all 
scientific and technological evaluations. Every once in a while there is a 
newspaper article that briefly assesses the status of magnetic fusion by 
stating that the problem has been worked on for n years "without success." 
This is extremely misleading. In fact, the state of the art has advanced by 
many orders of magnitude, with innumerable "breakthroughs," each 
sufficient to solve an ordinary difficult problem. But the path ahead will also 
require quite a few additional scientific and technological "breakthroughs." 
There is a very difficult public relations problem in simultaneously "pointing 
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with pride" to the past and realistically evaluating the distant future. 
A very brief statement serves to illustrate the magnitude of the 

technological requirements. An eventual (first generation) power producing 
reactor, as it is visualized today, would have a plasma core a few meters 
in minor diameter at a temperature in excess of 108 °C at a pressure of, say, 
10 atmospheres, carrying a current of 107 amperes. Something like one 
meter distant from the plasma are coils at room temperature (or, more likely, 
superconducting, at approximately absolute zero). The entire structure, 
under large, complex stresses, is bathed in X-rays and other types of 
radiation and also in neutrons. There is provision to replenish the plasma 
(continuously or intermittently, as in an internal combustion engine), to 
remove reaction products and the heat of reaction, with remote handling for 
possible repair and periodic replacement of radioactive structures. Even 
without detailed analysis, the engineering problem is, to say the least, for­
midable. 

The theoretical problem is at least as formidable. A simple (and very 
crude) measure of the richness of physical phenomena to be expected within 
a field is given by counting dimensionless parameters. For example, fluid 
dynamics is held to be spanned by two parameters, Mach number and 
Reynolds number (this is misleading, but not relevant for the present 
argument). A similar count in the simplest plasma (fully ionized, one species 
of ion) yields seven or eight instead of two. To be more specific, in order to 
eliminate the geometry, consider an infinite domain without boundaries and 
the classical steady, plane shock transition. In a gas, there is one parameter, 
the shock strength (this determines the thickness and all profiles, such as 
density, temperature, and the entire molecular distribution function). The 
equivalent problem for a fully ionized plasma in a magnetic field (uniform at 
infinity) has six dimensionless parameters. The large variety of qualitatively 
different physical mechanis ms that govern the shock thickness fill a six-
dimensional phase space (the shock thickness is almost never simply related 
to a mean free path). 

In Figure 2 the various regimes of classical fluid dynamics and kinetic 
theory are located on a two-dimensional figure with axes M (Mach number) 
and 1/Re (Reynolds number). Qualitatively, the value of M measures the 
importance of compressibility and Re that of viscosity (including tur­
bulence). Rarefaction effects (finite mean free path) are not included in fluid 
dynamics and are physically and intuitively distinct from compressive and 
viscous effects, but they appear on the same diagram, since the Knudsen 
number, K (mean free path divided by representative length) is given by 
K = M/Re. In other words, classical continuum fluid dynamics is more 
properly described as a one-dimensional parameter space, the two semiaxes 
where K — 0 (one parametrized by M, the other by Re). 

Classical incompressible inviscid fluid flow is represented by the neighbor­
hood of the origin in Figure 2. One might perhaps describe the content of 
this theory in a single volume. Compressible theory would require a shelf of 
books (lining the M axis) for comparable coverage, similarly for viscous flow, 



a row of books lining the 1 /Re axis. A bookcase-full (not presently available) 
would be needed to provide classical kinetic theory of gases with similar cov­
erage. An equivalent degree of coverage of all plasma physics would (perish 
forbid!) require the entire New York Public Library devoted exclusively to 
this subject (and the world's GNP for many years to amass the knowledge in 
these books). 

Restricting the field to plasmas of thermonuclear interest does cut down 
the magnitude of parameter space and of physical phenomena, but not 
enough to hope to blanket the area, either theoretically or experimentally, by 
any expenditure of effort and funds (e.g., magnetic fusion plasmas allow a 
density range of 104). Inevitably one must be extremely selective in choosing 
areas of study, and one must be constantly aware that the route followed is 
almost certainly not the best one. Nevertheless, whatever routes are followed 
must be pursued redundantly, with overlapping experimental parameters. 
Time does not permit elaboration of this essential point. 

There is a further peculiarity that characterizes thermonuclear plasma 
physics in contrast to other areas of plasma physics and of physics in general. 
A plasma is a new substance, a "fourth" state of matter. What we must do is 
to learn its properties such as equations of state, transport coefficients, wave 
propagation characteristics, and so forth; we must also learn to manipulate 
it—heat, cool, compress, pump, confine, purify—just as we do air or steam 
(or a new superfluid). Although nature is always exceedingly complex, 
physics gains its power (as does mathematics) by rejecting the complexities 
that occur in nature in order to study isolated "basic" phenomena (or 
structures). The goal of experimental plasma physics (as distinct from CTR) 

FIGURE 2 
REGIONS OF GAS FLOW 
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is to construct experiments each of which isolates an individual 
phenomenon. However, before we can study a hot plasma we have to catch 
one. This stipulation conflicts with the best scientific procedures. To create a 
hot plasma and keep it away from the walls, hot and undefiled for long 
enough to study it, requires complex combinations of experimental 
procedures and complicated geometries that conflict with the desire to 
simplify and isolate individual phenomena. In other words, one must be 
fairly successful in reaching the practical goal of plasma confinement before 
one can study the basic plasma properties which should be known in order to 
learn how to confine it. For a contained hot plasma the scientific and 
technological problems are presented all at once rather than in sequence. 
Analysis of complex interacting systems is commonplace in engineering, but 
not when the individual phenomena have not themselves been scientifically 
explored. A reasonable analogy for the fusion energy problem would be a 
mission-oriented program to land a man on the moon where, as part of the 
project, one must at the same time discover (and exploit) Newton's laws of 
motion, Maxwell's equations, electronics, and solid state physics. In ad­
dition, this is expected to follow a program plan which synchronizes and 
coordinates delivery of condenser banks with the planned date of the 
discovery of the magnetic monopole. 

To assess the status of this complicated combination of mission-oriented 
basic physics and brand new technology we look at two questions: 

1. To what extent are the relevant laws of physics known 
(in a practical sense such as, will turning a knob 
in one direction improve or destroy confinement)? 

2. Is the state of the art (experimental or theoretical 
or numerical) such that any level of effort at the present 
time is sufficient to answer a specific question, or must we 
wait a decade or a generation for the state of the art to 
reach an appropriate level? 

With regard to the second question, it is clear that the space program had 
to wait for solid state technology to provide an' appropriate level of 
miniaturization, also for computers to be able to calculate course corrections 
during flight. This state-of-the-art requirement applies equally well to 
theory. Quantum mechanics flourished in its early days because the 
mathematical foundations of spectral theory already existed; relativity 
progressed rapidly because differential geometry was available beforehand. 

Returning to CTR we point out that two tokamak experiments, the TTT 
and the Alcator (for the present, these can be taken as undefined terms) 
reached some sort of terminal state during 1976. The first was a disaster; the 
second succeeded beyond all expectations. The discrepancy cannot be at­
tributed to any significant difference in scientific ability, administrative 
planning, or funding hardship in the two organizations. The reason was 
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simply that the relevant laws of physics were not sufficiently known 
beforehand (or even yet): there was (and is) no sufficiently refined theoretical 
plus computational model able to discriminate between the two disparate 
behaviors. In order to discover the answers, both experiments had to be 
performed. 

Another fact (which requires too much space to document here) is that 
virtually every major confinement experiment to date has turned out to be 
dominated by a physical phenomenon which was not considered during its 
planning and design (this fact may be contested by some experts; it is 
nevertheless incontestable). 

It is clear that the requisite practical understanding of the physical (or 
even empirical scaling) laws is not yet known. What about the more serious 
practical question of the state of the art? This can only be answered by 
looking backwards. As an experimental example, the decade of the sixties is 
sometimes considered to have been fairly stagnant with moderate increases 
in nrand temperature, and numerous disappointments. But it was a time of 
revolutionary advances in plasma diagnostics and measurements. In 1960 if 
an experimenter was asked, what was the density or temperature of his 
plasma, one got a number in return (and, if pressed, a number surrounded 
by caveats. I recall having made the statement, in the late fifties, that if an 
operating thermonuclear plasma were presented to us by an extraterrestrial 
visitor from a superior civilization, we would have no means of confirming 
whether it indeed was what it was represented to be.) Ten years later, in 
1970, one could expect, in reply, to receive a flood of data giving profiles, 
density or temperature as a function of plasma radius and of time; in a few 
cases one would be overwhelmed with a complete distribution function in 
physical and velocity space. One cannot claim to have a science of plasma 
physics until plasma properties can be measured. One cannot begin to 
compare theory with experiment until detailed (profile) measurements can 
be made; the stability of a plasma, for example, will depend sensitively on 
the detailed profiles—not on just a few global properties. With a few ex­
ceptions, there was no way to compare theory with experiment until 
diagnostics reached a certain level of maturity (though, of course, very many 
such comparisons were made). There are still important gaps, for example, 
in the measurement of current density profiles (essential to compare with 
most stability theories), and it would be most useful for comparison with 
theory to have localized measurements of the fluctuation spectrum. 

A similar case can be made with regard to the state of the art in MHD 
theory of equilibrium, stability, and diffusion. In each of these, the degree of 
theoretical sophistication and professionalism that (with a very few ex­
ceptions) is absolutely necessary for purposes of experimental verification 
has only begun to be achieved since about 1970; briefly, for stability, global 
eigenfunctions rather than local criteria (nonlinear results are still in in­
fancy); for equilibrium, nonlinear and topological evolution; for diffusion, 
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time-dependent nonlinear evolution; in each case, with a very careful balance 
between analytical and numerical inputs. 

To summarize the state of the art in CTR after 20 years of research and 
development, consider as an analogue the sequence: 

Kitty Hawk 
Lindbergh 
Commercial jet 
Vanguard Grapefruit 
Appollo 
Self-sufficient space station—population 1000 

I would estimate that CTR has reached the Commercial Jet stage on the way 
to an eventual self-sufficient space station. Unfortunately, except for a few-
technical applications, there seem to be no significant commercially useful 
intermediate stages on the way to a fusion power plant. 

One fault in evaluation which has caused untold misunderstanding of 
progress in the field is the "one-clever-breakthrough syndrome" which is 
propagated equally by scientists (usually outside the field) and by newspaper 
reporters. Progress to date has been measured in orders of magnitude (and in 
scores of breakthroughs); but the path ahead is also measured in orders of 
magnitude. To counterbalance this is the fact that the payoff is also valued 
beyond measure, provided that the end result is not exorbitant in cost. 

Another fruitless evaluation is the comparison with the stages in the 
evolution of the fission reactor. The difficulties are noncomparable and occur 
in a different sequence. The relevant laws of physics in the fission problem 
were contained in the nuclear reactions and their cross sections. This is a 
triviality for the fusion problem, but there is no fission analogue to plasma 
turbulence, instability, or any cooperative effects in the neutron "fluid." The 
chemical problems of separating U235 and manufacturing UF6 bricks have no 
analogue in plasma physics. The actual construction and performance of the 
Stagg Field fission experiment (given the bricks) could be done by ap­
propriately coached high school students, whereas to just carry out a con­
temporary (far from reactor stage) plasma confinement experiment, given all 
the equipment (including, say, Thompson scattering or laser holography), 
requires a highly trained professional team of experts linked to a complex, 
real-time computing system. 

In any discussion of fusion someone is sure to ask, when will scientific 
feasibility, or a demonstration reactor, or commercial fusion power be 
reached? In 1962 the following reply was given; 

1. The theoretical problems are extremely difficult. 
2. The experimental and technological problems are 

even more difficult. 
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3. Guessing when the problem (in any phase—scientific 
feasibility, prototype reactor, commercial power) 
will be solved is most difficult of all. 

There is no reason to change this reply after a lapse of fifteen years. 
Several orders of magnitude still separate the present from where we wish to 
be. In covering this territory it is certain that new, unexpected physical 
phenomena will be encountered; new problems not yet formulated will have 
to be solved: new laws of physics will be formulated. One can. with some 
risk, predict technological advances—but no scientist has (or should have) 
the temerity lo foretell when new physical laws will be discovered, or how 
long it will lake to solve a problem before the problem has surfaced. Such 
estimates, when they are necessary, are the proper province of scientific 
administrators, and where social issues are involved, elected representatives. 
Rut when they are made by scientists, they should not be confused with 
scientific judgments. 

In a situation where predictions are so difficult (demonstrably so, 
historically), why are they so plentiful? There appears to be an equivalent of 
the axiom of business, that where there is a demand, it will be supplied. The 
same can be said of theoretical "explanations" of extremely complex ex-
IX'rimental situations and predictions of the unpredictable. There seems also 
to be an application of a form of Gresham's Law, that poor science will drive 
out good. The pressure on theory to agree with experiments and on ex-
periinents to agree with schedules is unbearable. If an administrator asks for 
a prediction, or an experiment demands an explanation a definite answer is 
always more acceptable than an equivocation. There has been recent 
pressure (in other fields) for "one handed" scientists, but it would seem that 
a scientist who has lost his "on the other" hand has ceased to be a scientist 
(even if. on the other hand, he turns out to be more useful to society by 
choosing not to be a scientist). 

There is a final and rather subtle point concerning predictions using 
complicated mathematical models in complex physical situations. In the 
development of fusion, we are presented with some extremely complex eco­
nomic situations.4 Social scientists have an advantage in almost never having 
succeeded in formulating a mathematically precise model of any part of their 
world; they usually retain a certain amount of cynicism with regard to math­
ematical models. " H a r d " scientists are accustomed to accepting extremely 
accurate mathematical models as a norm; the fact is that, practically 
speaking, physics is defined to be that part of the universe that is accurately 
describable by mathematical models (for example, turbulence has almost 
been banished from the subject). The fact that one does not predict a real 
airplane's performance from a single formula, but, rather, builds an onion of 
successive layers of partial theories and specialized experiments, is beginning 
to bear analogues in plasma confinement theory. 

All this talk of complexity may sound like pessimism or a cause for in-
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decision. The opposite is in fact t rue. There are many examples (of which we 
cite only a few) where the fact of complexity and lack of accurate knowledge 
gives the correct, positive course of action. For example, should we con­
centrate on what seems to be the single best approach? The answer is clearly, 
no. it is much too soon. The laws of physics and the empirical scaling laws 
change with each experiment. Should we build one large experiment at $N 
to test one hypothesis or four smaller ones at SN/4 each? The better answer 
for most rapid progress toward a reactor is obvious (build four), even though 
this runs counter to actual administrative practice. Since not all avenues can 
be tried, the optimum procedure would seem to lie somewhere between a 
one-shot gamble and a eross-the-board, safe approach. Of course, a relevant 
social or political input may prevent the question from ever taking the above 
form. There is also an interesting psychological point in the use of the phrase 
"real world" — are the laws of physics or of society and the budgetary world 
more "rea l ." and which laws are more dangerous to flout? 

The physical complexity is actually the single most important reason for a 
belief in the ultimate success of the program. Whenever one direction proves 
disappointing, there are ten alternatives to try. All the leading contenders 
today defy Murphy's Law (if anything can go wrong, it will)—each one 
behaves significantly better than one had any reasonable right to expect 
when it was planned. And the fact that so far almost all experiments end up 
heading in directions that were not planned, is evidence of the intelligent use 
of the flexibility inherent in the variety of options.5 '9 

BASIC CONFIGURATIONS 
We now describe some of the basic magnetic confinement configurations, 
together with a glossary of common terms used to describe them. Some of the 
names are functional or descriptive; others have lost their original meaning 
with the passage of time. 

A prototypical confinement geometry (Figure 3(a)) is an infinite plasma 
cylinder surrounded by a vacuum magnetic field, terminated at a conducting 
wall (which carries currents that can be considered to be the source of the 
field). In Figure 3(b) the field is axial, B z , and the current is azimuthal, J9; 
this is called a 0 pinch. The dual configuration, in Figure 3(c), with azi­
muthal field Be and axial current J z is called a z pinch. The name "p inch" is 
historical, referring to a transient phase; an axial electrical discharge be­
tween two electrodes gives rise to a distributed z current, the constituent ele­
ments of which attract one another, "pinching" until the electromagnetic 
attraction is balanced by the eompressively increasing plasma pressure. The 
conceptually simplest pinch configurations contain a constant pressure 
plasma but no field within the cylinder and a vacuum (harmonic) magnetic 
field outside (B z = const, B 9 = const / r) . 

For reasons of stability, the z pinch is always accompanied by an axial B z , 
taken to be uniform in the simplest case, with equal values inside and outside 
the plasma cylinder. The combination B z inside, a different value of B z plus 



B9 outside, both Je and Jz on the interface, is called a "screw pinch." The 
pressure balance condition at the interface is that p + V2B2 be continuous, or 
that 

p = % B 2 ,-ViW. (B2 = B6
2 + B 2 ) . ' out in H Z ' 

A more general cylindrical equilibrium, also termed screw pinch, has a 
distributed pressure profile p(r) together with fields Be(r), Bz(r) and currents 
Jz(r), Je(r). Ampere's law, J = curlB, or 

J e = B z ' , Jz = - ( r B r ) ' / r , 

coupled with the pressure balance, y p = J x B , or 

d(p + '/2Be
2 + '/2Bz

2)/dr + Be
2/r = 0, 

allow two of the profiles p, Be, Bz, J9, Jz to be given arbitrarily. The plasma is 
confined (two dimensionally) if p drops to zero, p(a) = 0, and the 
surrounding field, r > a. is harmonic. With this boundary condition for p, 
jBj is continuous at the interface; there can be a surface current, but it is 
usually set equal to zero (Be and Bz continuous). 

Other common plasma cross sections are the elongated Belt-Pinch (Figure 
4(a)), the Doublet (Figure 4(b)) with topologically nonsimple flux surfaces, 
and the Divertor (Figure 4(c); the two indicated coils are outside the plasma, 
leaving a simple magnetic topology inside the D-shaped plasma). 

To confine (or approximately confine) the plasma three dimensionally, the 
0 , z, or screw pinch can be bent into a torus, eliminating the open ends 
(Figure 5(a)); or the ends can be squeezed to reduce the end losses (Figure 
5(b)); or the cylinder can be made very long and the end-flow simply ignored; 

Plasma and wall 

Shell 

FIGURE 3 
CYLINDRICAL EQUILIBRIA 



FIGURE 4 
NONCIRCULAR CROSS SECTIONS 

(c) Divertor 
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FIGURE 5 
THREE-DIMENSIONAL CONFINEMENT 

(a) Closed system 

(b) Open system (mirrors) 

(c) Cusped geometry 
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with no attempt at stoppering, reactor conditions would require a length on 
the order of a few kilometers. 

According to original usage, a toroidal, ohmicallv heated discharge 
(generic screw pinch) of approximately circular cross section, enclosed by a 
circular cross-section conducting shell |as in Figures 3(a), 5(a)] with poloidal 
field small compared to toroidal (large toroidal current), low (3 = p/B2 

(plasma energy small compared to magnetic energy), and the "safety factor" 
q RBe

 7aB z (reciprocal of the magnetic rotation number. R and a are 
major and minor plasma radii) on the order of two or three, is called a 
tokamak (Russian acronym). Since the plasma has finite resistivity, toroidal 
current implies j Edx =£ 0. The magnetic flux threading the torus (usually 
in a transformer core) must vary in time; thus this is an inherently transient 
system. The term tokamak has expanded in common usage to include all 
plasma shapes and values of /3, heating by injected beams, compression, 
radio frequency waves, shock waves and so forth; with this newly acquired 
flexibility the tokamak has become the most viable and popular reactor 
concept (to the tune of a $250 million proposed experiment). 

The question of end losses, in an open system, is not simple. There are at 
least three qualitatively different mechanisms, depending on parameters. 
For small mean-free path (not usually relevant with reactor parameters), the 
How is sonic at an end. or throat (but this is complicated by the fact that, in 
MUD as distinguished from ordinary fluid dynamics, there are three 
characteristic speeds and three possible sonic transitions). For large 
mean free path and adiabatic orbits (small gyro radius), the loss 
mechanism is magnetic mirror reflection10 and velocity space diffusion into 
a loss cone; for nonadiabatic orbits (generally a consequence of locally 
weak fields or very high ji) the mechanism is cusp losses. There are 
corresponding configurations, called mirror machines (Figure 5(b)) and 
cusped geometries (Figure 5(c)), but the loss mechanisms do not necessarily 
apply to the correspondingly named configurations. 

An important consideration in the morphology of toroidal confinement 
geometries is that the conceptually simplest toroidal field configuration does 
not hold plasma, that is, any field in which all magnetic lines are circles with 
a common axis. A simple macroscopic argument shows that any solution of 
V p = J x B with the stated symmetry must have p = p(r) [in cylindrical 
coordinates (r. 0 , / ) | . which states that p is constant on an unconfined in­
finite cylinder; alternatively, any (transiently) confined plasma will have a 
net. unbalanced (outward) force. A somewhat similar microscopic orbit 
argument shows that nonconfinement follows from oppositely directed ion 
and electron orbit drifts. 

There are several common complications of this unworkable simple 
symmetry which are introduced in order to provide confinement. One goal, 
starting from the microscopic orbit model, is to create a family of confined 
flux surfaces which (to a certain approximation in orbit theory) guide 
particle orbits. In the tokamak, this is done by inducing a toroidal plasma 
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current. In the stellarator, nested flux surfaces are produced in the vacuum 
field by bending the configuration into a Figure-Eight, or by applying 
suitable externa! windings, usually helical, to give a nonzero magnetic 
rotation number. A different solution (with closed magnetic lines) is to 
provide a series of bumps (as in a string of mirror machines) along the 
toroidal direction, maintaining closed but noncircular field lines; this is the 
EBT (Elmo Bumpy Torus). 

From the point of view of the momentum balance, Vp = J x B.one is led to 
consider external coil systems which counterbalance the net outward force on 
the plasma in a purely toroidal field; this is the scyllac. One practical set of 
scyllac coils is helical, as in a stellarator, but the optimal solutions (as well as 
simple physical intuition) for the traditionally low (3 stellarator. based on 
vacuum flux surfaces, are quite different than for the high /3 scyllac. 
originating as a 0 pinch, and based on force balance considerations. 

It is interesting to point out that the original stellarator concept was the 
consequnce of a nonexistence theorem (under too much symmetry). Later, 
deeper analysis showed that all stellarator "solutions" remain subject to a 
more sophisticated lack of existence of static equilibrium, leading in 
practical cases to an irreducible fluctuation level and essential complications 
in the topology.1112 

The advantages and disadvantages of the various magnetic configurations 
coupled with the many ways of creating and maintaining plasma density and 
temperature are not at all evident, and. despite complex and sophisticated 
theoretical calculations and well-documented experiments are to a con­
siderable extent black (or at least gray) magic. For example, a simple mirror 
machine created by radiofrequency heating is observed to be stable; but if it 
is created by plasma injection it requires special stabilizing windings [Ioffe 
Bars, or cusped windings, Figure 5(c)]. Another example is the tokamak 
which requires for its operation an initial "anomaly" factor of some 200 in 
resistivity, dropping almost immediately to close to unity. Without the large 
initial anomaly it would be an uninteresting cold plasma. Without the 
precipitous drop, the plasma losses would be intolerable. 

State of the art confinement experiments at the present time are in the 
$10 $20 million range; in the next five or ten years they will reach the 
$50 $250 million range. The upper figure would, perhaps, produce an exper­
iment with significant burning if filled with tritium as well as deuterium. The 
present magnetic confinement budget is approximately $220 million for 
fiscal year 1977.13 

MATHEMATICS AND MAGNETIC CONFINEMENT RESEARCH 
It is traditionally felt that mathematicians contribute significantly only to 
a mature scientific discipline after the dust has settled and the physical laws 
are well established. We wish to demonstrate exactly the opposite. Because 
of (not despite) the great complexity and the difficulty of performing ex­
periments in magnetic confinement plasma physics, mathematics (and 
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mathematicians) not only can but must play a vital role in formulating the 
basic framework for future development and exploitation of the field. 

One could write down what many scientists would believe is a moderately 
accurate system of governing equations for a thermonuclear plasma. This 
would contain several coupled Bolt/mann equations for ions, electrons, 
neutrals, a particles, and a large number of ionized species (such as multiply 
ionized oxygen, iron. etc.). together with Maxwell's equations and the 
coupling to various types of radiation, plus some model for the influx of 
impurities from the walls. Nonlinear effects, turbulence, and changes in 
magnetic topology are just a few factors which we know will play a very 
important role. To be quantitatively accurate, this model would have to 
include three space dimensions and time. Unfortunately, no such model 
could yield any useful information without drastic modification. Very 
crudely, one might assign a figure of merit to a theoretical model as the 
product of three factors, one being the faithfulness of the model to physical 
reality, the second to geometrical reality, the third being a measure of its 
mathematical traetability. To be precise, a model which is "solved ap­
proximately" should be described as a more elementary model which is 
solved. It is clear that any useful model will have to set aside 90 percent of the 
physical complexity or (and?) 90 percent of the geometrical complexity. 
Ultimately, understanding of such a problem will come, not from one 
ingenious model, but from synthesis of very many interlocking ingenious 
models. 

There are three popular misconceptions worth brief mention. The first is 
that the validity of a physical theory is determined primarily by experimental 
confirmation; the second is that, in order to be useful, a model must yield 
quantitatively accurate results; the third is that physical evidence and in­
tuition provide the equations, after which mathematical analysis assists in 
obtaining the solutions. 

Relevant to the first two points is the fluid dynamics model of in­
compressible, irrotational potential flow. This is a very poor quantitative 
model of a real fluid; a half-century ago it was obsolete (d'Alembert's 
paradox, and so forth). Today, every fluid dynamicist spends a large amount 
of time developing a strong quantitative intuition about this nonexistent 
fluid. The reason is twofold. First, it makes accessible an enormous 
mathematical literature (in real geometries). Second, it provides the basis for 
describing a real fluid in terms of its deviation from ideal behavior. The ideal 
model can become quantitatively accurate after it is modified in certain well 
defined ways at boundary layers, wakes, and shocks. Even when not strictly 
quantitative, the combination of potential flow plus modifications is much 
more valuable for its physical insight than is the more accurate, full Navier-
Stokes equations with their much more limited analytical theory and greater 
dependence on case by case numerical solutions. The value of potential 
theory is much greater today than it was a half-century ago, because today its 
theory is much more powerful and its limitations are quite precisely known. 
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A similar concept in plasma theory is the concept of frozen flux, that 
magnetic field is carried with the fluid (cf. vorticity in fluid dynamics), 

d B / c)t + cur l (Bxu) = 0 
(B is the magnetic field and u the fluid velocity). This is very rarely an 
accurate, quantitative description of a plasma. But it is almost impossible 
to hold a rational discourse about a real plasma other than in terms of 
deviations from this ideal model. 

How does one determine which 90 percent of the "real" problem to throw 
away? One consideration is mathematical .solvability: (a) is the problem well 
posed? (b) are powerful tools available? No physical evidence or intuition can 
ever have any relevance to the question of wcll-posedness. The answer to this 
question is known to depend on arbitrarily small changes in formulation. No 
arbitrarily small change can have physical (as distinguished from 
mathematical) meaning. The laws of physics are not the same as the laws of 
mathematics; equations obey the latter. What physical intuition can con­
tribute is a strong psychological belief that something similar to a given 
formulation should be useful; this will encourage exploration of other neigh­
boring systems if a particular one is mathematically unacceptable. What 
muddies this point in practice is that an approximate mathematical "solu­
tion" of an ill-posed problem may also be an approximate solution to an, in 
some sense, neighboring well-posed problem (or this may be only a pious 
hope). For example, an asymptotic formula can be asymptotic to two dif­
ferent exact results; and an asymptotic procedure applied to an improper 
equation may give a formula which is correctly asymptotic to another (not 
even formulated) equation. 

To return to the necessary amputation of most of the physics and 
geometry, intuition and experience are evidently crucial. But mathematical 
intuition and experience are at least as important as physical intuition and 
experience. How is it that in many fields scientists obtain accurate results by 
what are, mathematically speaking, very sloppy means? The answer is 
complex; but most crucial is a feedback teaching mechanism which slaps 
your hand when you stray too far from the proper path. In a field with 
frequent and accurate recourse to experiment, this provides a very effective 
interactive mechanism. In a field such as the one we are now describing, the 
experimental feedback is very weak and ambiguous (the consequences are 
seen in the number of discarded models and calculations which litter the 
literature). However, since there is always a more accurate and more 
complicated equation which one would like to be able to solve, one can admit 
purely mathematical hand slaps as feedback, based on qualitative and semi­
quantitative inputs from the more exact model. A careful evaluation will 
show that, up to now, mathematical care and mathematical intuition have 
played a large role in obtaining lasting results in confinement plasma 
physics. 

"Mathematical care" must be carefully distinguished from mathematical 
rigor. A century of experience in applying mathematics to physical systems is 
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available to offer reliable guidance as to what kinds of expansions, 
iterations, scalings, simplifications, and approximations are likely to work in 
differing mathematical contexts and which ones are likely to lead to a well 
posed formulation. In any complex problem on which a number of 
mathematically incompatible models have been brought to bear (for 
example, microscopic and macroscopic, ideal and dissipative), in­
terpretation and synthesis of the disparate results in relation to the desired 
(unsolved) meta-problem is much more valuable than the raw, unevaluated 
data. The physical significance of singular and nonuniform results is 
generally meaningless if interpreted literally and is invaluable if put into 
proper context. Some of this is susceptible to proof; much is not. In large 
part it consists of being sensitive to mathematical warning signals that a 
formal procedure is about to run into a snag (this is analogous to the smell 
of burning insulation in an experiment). The misapplication of physical 
intuition (as derived from natural phenomena) to properties of equations is 
just as dangerous as is the misapplication of infinitely precise mathematical 
distinctions to nature (which latter error is, incidentally, the source of most 
"paradoxes" in physical science). 

This type of mathematical intuition, used to guess at what is likely to 
produce a correct result, is mathematics even in the absence of proof, since it 
concerns mathematical structures, not directly nature. In a sense, 
mathematicians have given up a part of their birthright in downgrading 
qualitative and intuitive analysis of mathematical structures (leaving this 
important task to non-specialists). Restricting the subject matter of 
mathematics to what has been proved is both illogical and unwise. 

As an illustration, let me relate a (true) anecdote concerning two scientists, 
one an applied mathematician, the other an experimental physicist, both 
listening to a theoretical lecture which involved a lengthy formal expansion 
leading to a result which was presented without further critical comment. 
Quoth the physicist, "He may have done the mathematics correctly, but he 
left out the physics." Replied the mathematician, "He may have done the 
physics correctly" (since formal calculations without error estimates are 
usually done by physicists), "but he left out the mathematics." In any event, 
from the terminology employed, both observers agreed that the most im­
portant component had been omitted. 

A brief word about numerical computation is in order since this will 
inevitably be an essential tool in any complex field. We have observed an 
empirical rule that a modest amount of appropriate analytic preparation will 
frequently be rewarded a thousand fold in accuracy or calculation time. 

In summary, since the traditional corrective action of experiment is 
weaker than usual in this field, more than the usual reliance on logical 
consistency and mathematical caution is demanded. In particular, if the 
model to be used has already been formulated, it is usually too late to take in 
a mathematical consultant. We remark that all the preceding generalities 
can be related to concrete examples.14"18 
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MATHEMATICAL EXAMPLES 

Introduction 
We briefly describe a class of related problems that serve to introduce 
some interesting new mathematical structures. The physical problems have 
great current interest and the mathematical formulations seem likely to lead 
to significant mathematical developments. They concern new types of well 
posed problems which have required development of a body of theory and 
discovery of practical techniques of solution; on the other hand, they are not 
so radically unfamiliar (all too common in plasma physics) as to lose contact 
with the body of established mathematics. They are related to ordinary and 
partial differential equations but are different from both; they can be termed 
nonlinear "functional" equations, but this serves no purpose. They exhibit 
the classical thread that a physical situation motivates the mathematical 
problem, but it does not give a precise formulation nor does it suggest 
practical methods of solution. 

The family of problems concerns adiabatic compression and resistive 
diffusion of a plasma. Implicit in the word adiabatic and in the concept of 
(slow) diffusion as distinguished from (fast) wave motion and flow, is the 
concept of a quasi-static one-parameter family of solutions of the 
equilibrium pressure balance, 

V p ^ J x B . (1) 

That we are concerned with a family of solutions of (1) comes from the 
(adiabatic) variation of external constraints such as coils, or through changes 
in internal pressure or current profiles induced by diffusion. 

For simplicity (and almost by necessity)19 we shall restrict ourselves to the 
two-dimensional form [(x,y), / ignorable]: 

B ~ n x V \p + nB,, n --• Vz, 

p = p W . Bz - W ) . (2) 

A i £ - — p W — t'(i/0, • — d^d0. 

or the axially symmetric form [(r,0,z), 6 ignorable]: 

B = V 0 x Vi/' + nBe, n ^ r v O , 

p=--pW. rBe= f(^). ^ 

/\*i, = r2 div( V >A/r2) - —r2p — ff. 

We are looking for a family of solutions of (2) or (3) which depends con­
tinuously on a parameter. If the parameter is contained in given functions 
p(i/-,t) and f(i/\t) or in a varying domain or boundary condition [with p(i/-) 
and f(i/0 fixed], we have a classical elliptic problem with known criteria for 
uniqueness, bifurcation, etc. If the problem is adiabatic, the two given 
profiles p(i/0 and f(^) are replaced by two adiabatic constraints (profiles) 
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which serve to determine p and f. For diffusion, there are additional 
evolutionary equations with time derivatives to govern the changing p and f 
profiles. In neither the adiabatic nor the diffusion problem is the formulation 
of a well-posed problem evident. 

Both of these problems are very singularly related to the dynamical 
equations of motion of an ideal or resistive magneto-fluid. In broad outline, 
the ideal equations, linearized about a static equilibrium [viz. about a 
solution of (1)|, can be related to a formally self-adjoint operator, L, whose 
eigenvalues. X = —OJ2, are the natural frequencies of oscillation. L is a sixth 
order operator whose spectrum contains continua, accumulation points, 
dense sets of points, and more pathology. With regard to the original 
question concerning a family of equilibria depending on a parameter, the 
significant feature is that if the origin, X = 0, belongs to the spectrum of L 
for a given solution of (1), then no neighboring, linearly perturbed 
equilibrium exists. A point eigenvalue, X = 0, in the linearized problem is a 
signal that there is a bifurcation of solutions in the nonlinear problem. 
Plausible arguments and examples can be given to show that a continuum 
which extends to the origin is a signal that the flux surface topology of the 
nonlinear solution is about to change, but (when correctly formulated), 
without any loss of uniqueness. There is also the possibility of simultaneous 
bifurcation and islation or anislation (appearance or disappearance of 
islands) for a point eigenvalue X = 0 at the end of a continuum. 

Flux conservation, implying invariance of all topological properties of field 
lines and flux surfaces, is a property common to both the linear and 
nonlinear ideal fluid equations of motion; it would therefore seem to be 
appropriate to adopt it as a constraint for any model of adiabatic variation. 
In particular, the value of the flux \p is constant at any critical point V ^ 
= 0. This topological constraint prevents continuation of both the linear 
and nonlinear adiabatic models past a point at which a continuum touches 
the origin. We are therefore led to generalize the definition of adiabaticity, 
dropping the invariance of \j/ at a saddle point (the presumed mechanism is a 
dissipative boundary layer in the neighborhood of a separatrix). Simply 
allowing a change of topology would permit infinitely many continuations of 
the equilibrium. The situation is handled in a way which is analogous to the 
introduction of shocks in ideal fluid dynamics. Several (usually three) 
adiabatic regions which abut along a separatrix (cf. Figure 6) are joined by 
jump conditions analogous to the Hugoniot conditions across a shock wave. 
The matching conditions are suggested by appropriate conservation laws. 
This procedure turns out to specify the unique continuation of a generalized 
adiabatic process past a change in topology. As in shock theory, no 
properties of the dissipative mechanism need be known, so long as they are 
compatible with the hypothesis that the separatrix boundary layer is thin. 
Total flux is conserved but there is "breaking" and "reconnection" of 
magnetic lines; similarly, there is conservation of total mass, but 
redistribution among the regions. 



Depending on whether appropriate regions grow or shrink, fluid and field 
can either mix or split; the two processes are evidently thermodynamically 
different. Problems of creation, growth, destruction, and interference of 
magnetic islands can be handled without overt reference to any dissipative 
mechanism. The evolutionary time scale is determined by the variation of the 
external constraints and not by a dissipative time scale. 

The present state of this subject comprises a modest number of proved 
mathematical theorems, somewhat more in the way of formal boundary layer 
and other expansions and examinations of singularities, and a large amount 
of empirical but accurate numerical confirmation of conjectured well-posed 
problems and of formal analytic singular and limiting behavior, the latter 
including, in particular, bifurcation, islation, and a host of boundary layers 
near the plasma edge, near a small emergent island and near the separatrix. 
The generalized adiabatic formulation with jumps has also been confirmed 
by numerical calculation of the resistive problem in the limit of small resist­
ivity and, in a few cases, by comparison with plasma experiments. 

If there is any point to this, one can also make an obvious connection with 
catastrophe theory. 

The Adiabatic Problem and Generalized Differential Equation 
in a Simple Geometry 
After this qualitative introduction, we turn to a slightly more detailed ex­
position. To be precise, consider a simple two-dimensional domain as shown 
in Figure 7 and a solution of Eq. (2) with simple nested contours y/ = const 
(as shown). For adiabatic constraints it is natural to introduce the volume 
V(\p) (area in two dimensions) within a flux surface (contour) i/* = const. The 
adiabatic constraints take the form 

FIGURE 6 
ISLATED DOMAINS 



FIGURE 7 
SIMPLE DOMAIN 

P / '(iD7 , ' -•-•• d / d V (- = A/d\P). 

f- ^ ' , (4) 
where n(\p) and y(^) are adiabatically invariant (given) profiles to replace p 
and f. Eliminating p and f in favor of n and v in Eq. (2) yields the rather 
opaque functional equation 

To gain understanding we simplify by setting 7 = 2, e==0, n=V2. and 
obtain 

M----~iP" (6) 
or for greater generality 

A^ = F ( V , ^ ' . i n . (7) 

This equation has been called a QDE (for "queer" differential equation or 
from the sequence O, P, 0 ) or, more prosaically, a GDE (generalized dif­
ferential equation). 

Even the simplest form (6) is rather unusual. On the left is an elementary 
elliptic operator on i/^x.y); on the right is the equivalent 1-D elliptic operator 
on iZ'(V); but the 1-D independent variable V is defined in terms of the 
contours, ip = const, of the 2-D dependent variable. The fact that the 2-D 
and 1-D differential operators are the same order will be seen to be crucial. 

To return to more familiar territory, consider the elliptic problem with 
p(0) and f(\p) given. The correct elliptic boundary condition is to specify \p, 
for example, \j/ = 0 on the boundary. The value I/^ at the "center" (assuming 
that the topology happens to turn out as shown in Figure 7) is determined 
together with the rest of the solution. If the shape of the domain is altered, 
the value of \px will change. The adiabatic statement of flux conservation for 
the entire domain demands that i/̂  be fixed under domain variation. In other 
words, to be physically appealing, the systems (5) or (6) [and, for 
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mathematical reasons, also (7)] must allow specification of \//l in addition to 
an elliptic boundary condition. This is not compatible with any known type 
of differential equation (it might result from an appropriate movable 
singularity at the "center," but this is not the correct description, and we are 
basically looking for smooth solutions). 

The mathematical (heuristic, numerical, and probably rigorous) 
resolution of the question of well-posedness of Eqs. (5) (7) becomes visible on 
taking the microcanonical average (volume weighted average, restricted to a 
flux surface) of the GDE. Without confusion [we have already used a 
common symbol for \p(x,y) and \p(V)], we introduce V(x.y) as well as V(i/), 
define 

<vo>= M d s / | V V|) = (d/dV) j s^dxdy, <8> 
V(x,y) < V 

where 

K d s / | V V | ) = l . l/tf' = J (ds / |ViH) . ( 9 ) 

and verify 

<A^> = ( K 0 ' ) ' . (10) 

where 

K(V)=< | V V | 2 > = Jj W | d s 

= ( l / 0 ' ) j ( d 0 / d n ) d s . (11) 

Let us detour for a moment with a few properties of the crucial geometrical 
quantity K(V). First of all, K is fully determined by the family of contours, 
independent of the distribution of \p on the contours. Second, for the 
topology of Figure 7, K(0) = 0. For a shell i/-, < \p < \p2. within which 
."\^ = 0, the inductance of the shell is 

L = ( V 2 dV/K. <!2> 
V, 

It is easily shown that 

K > / 2 > 4 T T V , (13) 

where £ is the length of the contour. The first relation conies from 
Schwarz's inequality, the second is the isoperimetric inequality (remember, 
V is area). The first relation is an inequality only if V V = const (equi­
distant curves), the second relation only for a circle. For a family of ellipses 
x2/a2 + y2/b2 = const, we have K = 27rV(a/b + b/a). For an imminent 
change in topology at the origin, \p = x2 4- ey2 + ay4 + - , K(V) ~ V2/3 

{t = 0). Briefly, K is minimized by a family of circles; it is large for elongated 
ellipses or corrugated contours; it is particularly large for elongated contours 
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in the neighborhood of a degenerate critical point. These qualitative proper­
ties of K will allow qualitative estimates of physical behavior under adiabatic 
compression (and diffusion). 

Returning to (10). (Ki/ 'T —• K\p" + K 'i/A we note that the center, V = 0. 
is singular for the averaged Laplace operator since the coefficient of ip" 
vanishes. The fact that no boundary condition can be specified at V = 0 for 
the 1 -D averaged operator, ( K ^ ' ) ' , is a reflection of the fact that V = 0 is an 
interior point of the domain for the original 2-D elliptic operator A. For the 
full GDF (6), the coefficient of \p" in the averaged equation is K + 1, which 
does not vanish. The average of the GDE, (5) or (7), is always an ODE 
(taking K as given). Under appropriate (mild) restrictions, the center V = 0 
is regular for this ODE. allowing \p(0) =\px to be specified as a boundary 
condition. 

From the above remarks, it is heuristically clear why specifying i/'i as well 
as an elliptic boundary condition is likely to be well-posed for the GDE. It is 
also clear that the averaged GDE must be used in any constructive approxi­
mation algorithm to allow the prescribed value of \pr to enter the problem at 
all. The simplest algorithm (which turns out to converge remarkably well 
numerically) is to alternate between successive evaluations of the 2-D con­
tours. \p --- const, and the 1-D profile. \J<(V). First, the GDE is used, with the 
right side treated as a given inhomogeneous term (or a given function of V or 
i/0 in order to determine a family of contours, thence K(V); the values of \p 
are discarded. Next the averaged GDE is treated as a second-order ODE 
with K(V) known and is solved (subject to obvious restrictions) taking \p = \pi 
at V = 0. as well as i/< = 0 at the outer boundary. The principal result is the 
solution of a specified equilibrium given adiabatic constraints /x and v in­
stead of elliptic constraints p and f; as a consequence, one also obtains a 
family of adiabatically related solutions as an external constraint is varied, 
keeping fi(\p) and v(\p) fixed. This can be considered to be the solution of an 
appropriate (slowly varying) time-dependent problem. 

The mathematical significance of the GDE is elucidated by embedding it 
in a sequence of problems: 

A^-Ff-A). (14a) 

A^ = F(V), (14b) 

. \ ^ = F W ) , (14c) 

A^ = F 0 n . (14d) 

In each case we suppose that the domain and the function F are suitably 
restricted to avoid complications. We now make a number of statements, 
some proved in restricted formulations, others apparently amenable to tools 
of conventional analysis but not yet attempted, still others in the form of 
supporting nonrigorous analytical and numerical evidence. Case (14a) is 
elliptic. Although (14b) is not elliptic (it is not a differential equation), it is 
qualitatively elliptic in that a solution is determined by an elliptic boundary 
condition, and the right-hand side is dominated by the left-hand side. The 
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same is true of (14c). In other words, it is not the introduction of the highly 
implicit and nonlinear variable V that is important; it is the appearance of a 
second derivative V" to interfere with the second-order Laplacian, as in 
(14d), which changes the nature of a well-posed problem. 

Islation and Generalized Adiabatic Constraints 
Now we turn to changes in topology resulting from a variation of constraints. 
In the elliptic formulation, a change in contour topology is not particularly 
significant, and the topology of the solution does not enter in existence proofs 
or practical methods of solution. For example, the elementary equation 
A\j/ = 1 will have simple contours in a convex domain, but the topology will 
change when the domain is sufficiently indented. Similarly, for the nonlinear 
A\J/ — F(\p), one can have a family of unique solutions in a family of domains 
with no singular behavior at a change in topology. The variational equation 
for the elliptic equation A^ ~ F(t/') in terms of <p — 3 i/V ^ t is 

( A - r > = 0. (15) 

This equation makes bifurcation visible, but it exhibits no distinguishing 
features at a point of islation. The variational equation for the GDE (6) in 
terms of if = <$\p/c)t is 

( A + <JV> = —<<?>" —<T<<P>. ( j = ^ " ' / i / A (16) 

This equation is singular at a degenerate critical point such as 
\j/ = x2 + y4+ ••, where (/''(O) = 0, or on any curve where i/-'—0 (this 
is topologically unstable). How to continue the solution past such a point is 
not obvious from the linear variational equation (which is a GDE, just as is 
the original nonlinear equation). 

The correct treatment of islation (also of anislation — disappearance of an 
island) is necessarily nonlinear, but nonlinearity alone is insufficient for a 
change in topology. The matching conditions across a separatrix are, in 
principle, elementary, but they are subject to a number of subtleties such as 
differences between 7 = 2 and 7 =£ 2, differences between islands in 2-D and 
in axial symmetry, and different relationships toward conservation of energy 
and variational formulations in these various cases. 

It is useful to point out that there arc apparently two mathematically valid 
formulations of the equilibrium problem under adiabatic constraints (ji and 
v formulation) in a complex geometry. One is to adopt strict flux conser­
vation as suggested by the equations of motion, taking \pc as well as \pl and \p2 

as given constraints (Fig. 6); /*{(</-) and v\(\p) are given profiles for i = 0,1,2, 
the range of \p in each function being specified a priori. One can give 
heuristic iterative and variational arguments to indicate that this strict inter­
pretation of flux conservation will frequently (e.g., in axial symmetry for 
7 =£ 2) lead to discontinuities of p, f, and \p' (\p is, of course, continuous) 
across the separatrix. This also implies the presence of a surface current, 
[ V 0 ] ^ O , at the separatrix. The local pressure balance 



30 HAROLD GRAD 

[p + >/2B2l = 0 (17) 

will be maintained across the separatrix; this is merely the weak form of (1). 
Note that although this strict adiabatic formulation may allow one to solve 
for an equilibrium in a complex topology with strictly given adiabatic 
constraints n- and C j . i t does not allow the topology to change so long as 
the profiles /*; (\p), v- (i/-) are strictly preserved. 

The surface current at the separatrix is one reason to expect noncon-
servation of the value of \pc (Figure 6) since the separatrix is perpetually in a 
resistive boundary layer for any value of the resistivity, no matter how small. 
On the other hand, Faraday's law implies conservation of I/^ and \p2 even 
when they are separated by a resistive layer. Dropping the constraint on \p c 

is the principal ingredient in the generalized adiabatic formulation in which 
total mass, flux, and volume are preserved, but not in the individual regions 
i •" 0, 1, 2. The basic matching conditions are found to be 

ip] = m = i v ^ i = o (i8) 
in addition to (17). Some of the most important auxiliary connection for­
mulas are 

W o ' - l / ^ ' + l / ^ ' (19) 

(involving conservation of volume and flux and absence of surface current). 
In the case of mixing (shrinking domain 0 in Figure 6(a) and growing domain 
0 in Figure 6(b)), we have 

^ = ^n+H2in • (2°) 

while for splitting (growing domain 0 in Figure 6(a) and shrinking in Figure 
6(b)). 

/ i , - - ( i / v / i / V ) MO. 

M2=- ('Ao'/'/'2')Vo- (21) 
The formulas (20) and (21) serve to extend the definition of the "given" 
function /.i{\p) when the domain of the independent variable \p changes. 

Resistive Diffusion 
In the limit of small resistivity, we expect diffusion to be a slow phenomenon 
compared to wave motion. A formal scaling can be given to decouple the two 
time scales (actually, two sets of time scales). The principal result is that the 
plasma is, at every instant, in static equilibrium, V p = J x B (gdu/dt is 
dropped from the equation of motion). However, all other time derivatives 
such as c3B/ c3t, c)p/d t are retained. In other words, the system of equa­
tions (which we exhibit later) describes a time-dependent (one-parameter 
family) of static equilibria, Vp = J x B. Let us examine Ohm's law, which 
takes the form 

E + u x B = i)J, (22) 

where 17 is the resistivity. At a given instant we can consider B and J to be 

Cj.it
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known, while E and u are not. In an infinite medium, rjj can be arbitrarily 
split into two parts, E and u x B. by choosing a moving frame. In a bounded 
domain, the resolution of 17J into its two components is not arbitrary; this 
separation is, in fact, the object of the difficult and elaborate theory of 
diffusion. Consider first the two limiting cases. r ^ - E , i j J = u x B . 

If E = JJI, from Maxwell's equations, 3 B/d t + curl E = 0, and J -- curl 
(B//i0). we obtain a simple diffusion equation: 

d B / d t +curl(r)/MocurlB) = (), (23) 

with diffusion coefficient D0—r;/^0. This equation describes the classical 
skin effect usually described as field or current penetration into a rigid con­
ductor. 

The other extreme, t)J = u X B is simplified by assuming that u is perpen­
dicular to B, thus. 

u = — T,(J x B)/B2 = — 77VP/B2. (24) 

To further simplify, consider an isothermal case in which p/g — const. 
Conservation of mass, d p / d t + div(pu) = 0, therefore takes the form 

d p / d t = div(p/B2 Vp). (25) 

This is a somewhat unusual, nonlinear diffusion equation for p with a 
(linearized) diffusion coefficient D, = /3D0 (in laboratory plasmas /3 can take 
values ranging from 10"8 to I02). D1 is frequently termed the "classical" co­
efficient to plasma diffusion. 

One would be tempted to describe (23) as field diffusing through plasma 
and (25) as plasma diffusing through field. At first glance one might also 
think that only the relative diffusion matters. But in a domain with boun­
daries, both plasma and field diffuse (of course, not independently, since 
they are related by pressure balance). There are thus at least two pheno­
mena, not always distinguishable, and the determination of E and u conies 
from the solution of a nonstandard global initial-boundary value problem. 

The scaling referred to above, in which gdu/dt was dropped, retains u in 
other equations of the system. For example, with a simplified treatment of 
energy conservation, the Grad-Hogan equations are 

V p = curlB x (B//x0), 

d B/ d t + curl(B x u) + curl(r;/^0 curl B) = 0, 

and 

d p / £ t + div(pu) + (7—Dp d i v u = 0 . (26) 

We have an isothermal or adiabatic plasma by setting 7 = 1 or 7 > 1, re­
spectively. Evidently (assuming that the system makes sense), u must be 
determined at each instant in such a way that the time derivatives dB/ dt. 
d J / d t - a r ,d d p / dt are compatible with maintaining V p = J X B. In two 
dimensions and axial symmetry, u V i/-, the normal component of u, turns 
out to satisfy a linear GDE (with coefficients depending on the instantaneous 
equilibrium state). In a sense, this reduces the diffusion problem to one that 
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is "known"; but this method of advancing the solution in time is much less 
efficient, numerically, than others which will be described later. 

For purposes of illustration, we turn to a simpler model [which turns out to 
be the special case of (26) in two dimensions at low 0, in which limit p and 
the two field components decouple]. Taking the flux function \p as in Eq. (2), 
the classical skin effect in a solid conductor is described by the diffusion 
equation 

d ^ / d t = i j /V. (27) 
where r) is the (constant) resistivity; the current A^ satisfies the same 
equation. In a deformable plasma, pressure balance requires identical flux 
and current contours, 

/>^ = F(iM). (28) 
The two equations (27) and (28) are, in general, incompatible for any choice 
of F (the frequently solved cylindrical diffusion problem in which circular \p 
contours automatically coincide with A\p contours is nonrepresentative). 
Since a plasma is deformable, we replace (27) by 

M/ St + U-VI/- = T?AI/', (29) 

and (as a result of scaling or merely for simplicity of the model), we also take 
< u - V ^ > = 0 (30) 

on each flux contour (the deformation is incompressible, on the average). It 
is not immediately evident that the system (28)-(30) with an elliptic boundary 
condition (say i/- — 0 on a fixed or deforming boundary), plus initial specifica­
tion of Ffi/'.O) describes a well-posed problem and determines ^(x,y,t), 
F(i/\t), and i r vA- (The relation to the GDE formulation is hidden is this 
model). 

A heuristic indication that this dissipative system is well-posed (impracti­
cal numerically, but useful for analytic results) goes as follows.17 Dif­
ferentiating the constraint Ai/-= F(i/',t), 

A ( d ^ / d t ) = (dF/dt) + F ( d ^ / d t ) . ( 3 1 ) 

Taking G to be the inverse (Green's function) of the operator A — F, 

d ^ / d t = G(dF/dt) + g, (32) 

where g is the contribution from the boundary. Averaging on a flux contour 

r)F=<G)(dF/dt)+<g> (33) 
or 

dF/dt = 7j<G>-1F-<G>-1<g>. (34) 

The Green's function <G> is averaged with respect to each pair of variables. 
For a "reasonable" set of contours, <G>_1 has been shown to be approxi­
mately a Sturm-Liouville operator.20 Thus F evolves in time as the solution of 
a 1-D diffusion-type equation (34). After solving for F, \p is obtained from 
(28), and uViA from (29). 
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The same averaged Green's function technique can be used to formally 
solve the linear variational equation (16) in the case of the adiabatic GDE 

<p = — G « S C ) " + CT<^». (35) 

Averaging and inverting <G> yields 

< » " + <G)-1<(P> = — o{<p). (36) 

The principal part (ignoring bounded operators) is the sum of two Sturm-
Liouville operators and is invertible with suitable restrictions. 

An alternative solution scheme, which is very efficient numerically (though 
less tractable analytically), is to average (29), viz. 

i{ =T?(K<n\ ( K ^ ' ) ' s F . (37) 

If the geometrical coefficient K(V,t) were known, the profile i/<(V,t) would be 
obtained as the solution of this conventional 1-D diffusion equation. The 
inductance, K, which reflects the 2-D origin of (37). is recalculated at appro­
priate time intervals by computing contours from A^ = F where F is the end 
result of an interval of 1-D diffusion of (37). Since the geometry usually 
changes relatively slowly (compared to 1-D profiles which may contain boun­
dary layers, etc.) this formulation successfully solves an unusual, implicit 2-
D diffusion equation by the expenditure of not much more computing time 
than is appropriate for a 1-D standard diffusion problem. 

It is instructive to compare (29) with its mean value (37). The convective 
term IT vA is highly implicit and nonintiiitive since it arises in response to the 
changes in shape of the contours required to maintain A\p constant on \p con­
tours. The changes in shape are incorporated into (37) (which has no convec­
tion) through the inductance coefficient K(V) which, after a little practice, 
becomes very intuitive. 

For example, in Figure 8 are presented the results of a numerical solution 
of Fqs. (28)-(30), using the methods just indicated. The initial state, Figure 
8(a), represents a belt pinch with J(V) = const [the diagram on the right is 
J(V)]. A pair of coils in the vacuum region between the plasma and the rec­
tangular box is used to compress the waist of the plasma. Figure 8(b) is just 
before islation, and Figure 8(c) some time later. The corrugation near the 
edge of the plasma increases the value of K and gives a small current increase 
toward the plasma edge (the boundary condition has been chosen to elimi­
nate the skin current which would give a sharp negative peak). The elonga­
tion of the flux contours near the center just before islation gives the current 
peak at the center in Figure 8(b). The double peaked current layer near the 
separatrix in Figure 8(c) is a consequence of the fact that K(V — Vc) — — 
log | V — Vc | is a moving singularity. A simple analytic exercise, solving (37) 
explicitly with a given K = K(V — ct) (containing the logarithmic singu­
larity) for a steady state \p(V — ct) gives the same type of double peaked 
current. In particular, the exact solution of the diffusion equation gives a 
cusp at the positive peak and a rounded negative peak, as indicated by the 
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numerical computation. It is worth remarking that the detail in the 1-D 
current profile is accurate on a much finer scale than the 2-D mesh size. 

One crucial qualitative point can easily be missed. In a solid conductor, 
flux and current diffuse identically. In a deformable plasma, the flux i/^V.t) 
again satisfies a diffusion equation; changes at the boundary penetrate to the 
interior very slowly, via a boundary layer if r) is small. The current density 
does not satisfy a diffusion equation; viz., with r; = const, J = ( K ^ ' ) ' . 

J = T , ( K J ' ) ' + ( K t ^ ' ) ' . (38) 

The additional term, involving K t , is an adiabatic change in J caused by the 
change in shape and penetrates instantaneously. The common reference to 
"current skin penetration" is misleading. Numerical results very similar to 

Fully developed islands 

) Before islation 

Initial state 
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Figure 8 are obtained from the adiabatic GDE, using appropriate jump con­
ditions across the separatrix (except for the current layer in Figure 8 very 
near the separatrix, which is resistance-dominated). 

The relation of this diffusion problem in the limit of small -q to the appro­
priate (low /3) adiabatic problem is illuminating. Setting r) = 0 in Eq. (37), we 
obtain \p^ = 0; the profile \p(V) is invariant as the geometry changes in time. 
The fact that iA(V) is invariant can also be deduced as a singular limit of the 
adiabatic GDE (5), given n(\p) and v(\p). The precise formulation of the 
limiting adiabatic problem [replacing (5)] is to determine the geometry given 
the profile \p(V) [this profile problem could be added as a fifth item in the list 
(14)]. Specifically, given a domain with volume V and a function 
V^V), 0 < V < V, determine ^(x. y) such that A^ = i(\p) for some f. There are 
several effective numerical methods of solving this profile problem by intera-
tion. One is to introduce V(x. y) instead of \p(x, y) through 

A V - K ' + ( ^ " / i A ' ) ( K — | V V | 2 ) . (39) 

Here <p(V) - i/- "/i/-' is given and V(x,y) is to be found. More interesting is the 
following variational formulation. Take the conventional variational func­
tion (Dirichlet principle) 

U - ( 'A | ViA|2dxdy, (40) 

where admissible functions \Mx.y), defined in a simple 2-D domain, are 
assumed to be compatible with a given i/-(V). With this class of admissible 
functions i/<(x,y). U turns out to be stationary for \[/ = \p0(x,y) such that 
i/'o^const and . \ '^0-const contours coincide. A member of the admissibil­
ity class can be alternatively described by specifying a family of curves which 
simply cover the domain as in Figure 7; given the curves one calculates V and 
assigns \p according to yHV), then calculates \[/(x,y), hence U. In this formu­
lation the geometry and profile parts of the various formulations (14) are 
visibly distinct. 

As a final comparison between the resistive and adiabatic problems we 
present a table of singular behavior near a separatrix: 

Adiabatic Resistive 

J ~ V'-1/3 (acute) J ~ 1 
K - 1 K - log ! V 
K' - V- , /3 (acute) K' - I/V 
t£ ' - 1 iA ' ~ 0 

The statement J ~ V~1/3 (acute) means that J has this unbounded behavior on 
the acute side of the separatrix, but is bounded on the obtuse side. Note that 
J - 1 near an acute corner automatically implies that V ~ i/- log \p; to have 
•y ~ I |for the adiabatic problem to be meaningful, p =/x(\p')">' cannot be 
zero], J must be unbounded. J is more singular in the adiabatic case, K in the 

file:///Mx.y
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resistive. There is evidently a very complicated transfer of singularities in the 
limit r] — 0 (e.g., for very small J; there is a transfer from K ' ~ V , / 3 (acute) 
near the separatrix to K ' ~ 1 /V very near the separatnx]. 

One physical conclusion is worth repeating. The time scale for magnetic 
field line "breaking" and "reconnection" (which are terms used in astro­
physics) is not related to that of any dissipative mechanism; compared to the 
latter, changes in topology occur arbitrarily rapidly. This has beer, eiearly 
demonstrated, analytically and by adiabatic and resistive numerical 
calculations.21 '30 

CONCLUSION 
In a period of over twenty years, a new scientific discipline has arisen, based 
on the goal of magnetically confining a hot plasma under conditions ap­
propriate for the release of energy by nuclear fusion. New experimental 
techniques have been developed and refined by orders of magnitude: new-
technologies have begun; new (as well as applications of old) physical and 
mathematical theories have appeared and in some cases reached a level of 
scientific maturity. Effective use is being made of large-scale computing for 
instantaneous and retrospective interpretation of the overwhelming ouantitv 
of experimental data; computer use as an imaginative supplement 10 
theoretical analysis and as an independent source of physical and mathe­
matical "experimental" information through mathematical modeling has 
already had significant impact on the understanding of plasma phenomena. 

The almost incredible advances in the accuracy of physical measurements 
and in control of plasma, and to a lesser extent in externally visible plasma 
confinement landmarks and in plasma understanding are the most obvious 
indications that we shall successfully overcome the (still undefined) enor­
mous difficulties that are certainly ahead. Equally important is the flexibility 
inherent in the almost unlimited variety of plausible option:', that are availa­
ble; wherever one obstacle has appeared, three solutions have presented 
themselves. The present state-of-the-art is sufficiently fluid so that maximal 
orderly speed toward the goal of economical fusion power requires examina­
tion of as many carefully selected options as financial exigencies will permit, 
rather than arbitrarily closing down on the one or two that appear to be 
"most likely." In any event, there is no doubt that in the ultimate future. 
whatever the date, fusion will take the position as prime energy resource 
away from oil and coal (with fission as a necessary but unpleasant holding 
action, and solar, geothermal, etc. as supplemental resources, depending on 
local conditions). 

Mathematically, the welding of numerical experimentation with tradi­
tional analysis to extend the power of mathematics in order to be able to act 
effectively on a practical time scale is only beginning to make itself felt, Since 
the digital computer is essentially a purely mathematical device (more 
precise and demanding of rigor than many mathematicians), this relation­
ship is a natural one. Perhaps the most significant feature, practically, is that 
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no conceivable future generation of computing machines is large enough to 
allow routine solution of plasma reactor problems; optimization, efficiency, 
and cleverness at the analysis-computing interface, however, have em­
pirically been found to be worth many orders of magnitude (or generations of 
computer hardware).31 In particular, to determine what is far in the future 
or what may soon be at hand is not a simple evaluation. 
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